Loading AI tools
transistor yang digunakan untuk memperkuat atau mengalihkan sinyal elektronik Dari Wikipedia, ensiklopedia bebas
Transistor efek-medan semikonduktor logam-oksida (bahasa Inggris: metal-oxide-semiconductor field-effect transistor, MOSFET) adalah salah satu jenis transistor efek medan. MOSFET mencakup kanal dari bahan semikonduktor tipe-N dan tipe-P, dan disebut NMOSFET atau PMOSFET (juga biasa nMOS, pMOS). Ini adalah transistor yang paling umum pada sirkuit digital maupun analog, tetapi transistor sambungan dwikutub pada satu waktu lebih umum.
MOSFET | |
---|---|
MOSFET daya dalam kemasan D2PAK | |
Simbol | Pengayaan kanal-P
Pemiskinan kanal-N |
Tipe | Komponen aktif |
Kategori | Transistor FET |
Penemu | Mohamed M. Atalla dan Dawon Kahng |
Komponen sejenis | JFET, MESFET, ISFET |
Kemasan | 3 kaki (sumber, cerat, gerbang) |
MOSFET diciptakan oleh Mohamed M. Atalla dan Dawon Kahng di Bell Labs pada tahun 1959, dan pertama kali diperkenalkan pada Juni 1960. Perangkat ini merupakan perangkat pembangun dasar dari elektronika modern, dan merupakan perangkat elektronik yang paling banyak diproduksi dalam sejarah, dengan jumlah kira-kira 13 sekstiliun (1,3×1022) MOSFET yang diproduksi di antara tahun 1960 dan 2018.[1] MOSFET merupakan alat semikonduktor yang doniman di dalam sirkuit terpadu (IC) digital ataupun analog,[2] dan merupakan perangkat daya yang umum.[3] MOSFET merupakan transistor padat yang diminiaturisasi dan diproduksi masal untuk berbagai bentuk penerapan, merevolusi industri elektronik dan ekonomi dunia, dan penting bagi revolusi digital, zaman silikon dan zaman informasi. Miniaturisasi MOSFET telah mendorong perkembangan cepat dari teknologi semikonduktor elektronik sejak 1960-an, dan memungkinkan IC berdensitas tinggi seperti cip memori dan mikroprosesor.
Kata 'logam' pada nama yang sekarang digunakan sebenarnya merupakan nama yang salah karena bahan gerbang yang dahulunya lapisan logam-oksida sekarang telah sering digantikan dengan lapisan polisilikon (polikristalin silikon). Sebelumnya aluminium digunakan sebagai bahan gerbang sampai pada tahun 1980 -an ketika polisilikon mulai dominan dengan kemampuannya untuk membentuk gerbang menyesuai-sendiri. Walaupun demikian, gerbang logam sekarang digunakan kembali karena sulit untuk meningkatkan kecepatan operasi transistor tanpa pintu logam.
IGFET adalah peranti terkait, istilah lebih umum yang berarti transistor efek-medan gerbang-terisolasi, dan hampir identik dengan MOSFET, meskipun dapat merujuk ke semua FET dengan isolator gerbang yang bukan oksida. Beberapa menggunakan IGFET ketika merujuk pada perangkat dengan gerbang polisilikon, tetapi kebanyakan masih menyebutnya MOSFET.
Prinsip dasar dari transistor efek-medan (FET) pertama kali diusulkan oleh fisikawan Austria-Hungaria Julius Edgar Lilienfeld pada tahun 1926, ketika dia mengisi paten pertama untuk transistor efek-medan gerbang-terisolasi (IGFET).[4] Selama dua tahun berikutnya dia menjelaskan berbagai struktur FET. Dalam konfigurasi MOS-nya aluminum dilambangkan oleh M, aluminum oksida dilambangkan oleh O, sedangkan tembaga sulfida digunakan sebagai semikonduktor. Akan tetapi, dia tidak mampu membuat perangkat FET yang bekerja secara praktis.[5] Konsep FET kemudian juga dikembangkan teorinya oleh insinyur Jerman Oskar Heil pada 1930-an dan fisikawan Amerika William Shockley pada 1940-an.[6] Tidak ada FET yang bekerja secara praktis yang dibuat pada saat itu, dan tidak ada usulan FET awal yang melibatkan silikon yang dioksidasi termal.[5]
Perusahaan semikonduktor awalnya berfokus kepada transistor sambungan dwikutub (BJT) pada tahun-tahun awal industri semikonduktor. Akan tetapi, transistor sambungan merupakan perangkat yang relatif tebal dan sulit diproduksi massal, sehingga BJT terbatas penggunaannya. Dalam teorinya, FET bisa menjadi alternatif bagi transistor sambungan, tetapi para peneliti tidak mampu membuat FET yang praktis, terutama dikarenakan sawar keadaan permukaan yang menahan medan listrik dari luar untuk masuk ke dalam material.[7] Pada 1950-an, para peneliti kebanyakan telah berhenti mencoba konsep FET, dan berfokus kepada teknologi BJT.[8]
Pada tahun 1955, Carl Frosch dan Lincoln Derrick tidak sengaja melapisi permukaan wafer silikon dengan selapis silikon dioksida. Mereka menunjukkan bahwa lapisan oksida menahan pendadah-pendadah tertentu memasuki wafer silikon, sedangkan pendadah yang lainnya dibiarkan masuk. Dengan begitu, mereka menemukan efek pasivasi dari oksidasi permukaan semikonduktor. Pekerjaan mereka berikutnya adalah mendemonstrasikan bagaimana cara mengetsa celah-celah kecil di lapisan oksida untuk menyebarkan pendadah ke bagian tertentu dari wafer silikon. Pada tahun 1957, mereka menerbitkan sebuah makalah penelitian yang merangkum hasil kerja mereka dan mematenkan teknik mereka. Teknik yang mereka kembangkan dikenal sebagai oxide diffusion masking (penopangan difusi oksida), yang kemudian digunakan dalam fabrikasi perangkat-perangkat MOSFET. Di Bell Labs, pentingnya teknik Frosch segera disadari karena silikon oksida jauh lebih stabil daripada germanium oksida, punya sifat dielektrik yang lebih baik dan pada saat yang sama bisa digunakan sebagai penopang difusi. Hasil pekerjaan mereka beredar di Bell Labs dalam bentuk memo sebelum diterbitkan pada tahun 1957. Di Shockley Semiconductor, Shockley telah mengedarkan pracetak dari artikel mereka pada Desember 1956 ke semua staf seniornya, termasuk Jean Hoerni.[7][9][10]
Pada akhir 1950-an, Mohamed M. Atalla sedang mengurus masalah permukaan keadaan di Bell Labs. Dia menemukan pekerjaan Frosch mengenai oksidasi, berusaha mempasivasi permukaan silikon melalui pembentukan lapisan oksida di atasnya. Dia berpikir bahwa menumbukan secara termal SO2 berkualitas tinggi yang sangat tipis di atas wafer silikon yang bersih akan menetralkan keadaan permukaan sehingga transistor efek-medan dapat bekerja secara praktis. Dia menuliskan penemuannya dalam memonya pada tahun 1957, sebelum mempresentasikannya di sebuah pertemuan Electrochemical Society pada tahun 1958.[11][12][13][14][12][6] Ini merupakan perkembangan penting yang memungkinkan teknologi MOS dan cip sirkuit terpadu (IC) silikon.[15] Pada tahun berikutnya, John L. Moll menjelaskan kapasitor MOS di Universitas Stanford.[16] Rekan kerja Atalla, J.R. Ligenza dan W.G. Spitzer, yang mempelajari mekanisme oksida yang ditumbuhkan secara termal, berhasil memfabrikasi sebuah tumpukan Si/SiO2 berkualitas tinggi,[5] dengan Atalla dan Kahng menggunakan penemuan mereka untuk membantu membuat MOSFET yang pertama.[17][18]
MOSFET diciptakan oleh Mohamed Atalla dan Dawon Kahng di Bell Labs,[12][11] di mana mereka berhasil memfabrikasi perangkat MOSFET pertama pada November 1959.[19] Perangkat tersebut dicakup oleh dua paten, masing-masing diajukan secara terpisah oleh Atalla dan Kahng pada Maret 1960.[20][21][22][23] Mereka menerbitkan hasil mereka pada Juni 1960,[24] di Solid-State Device Conference yang digelar di Universitas Carnegie Mellon.[25] Pada tahun yang sama, Atalla mengusulkan agar MOSFET digunakan untuk membuat cip sirkuit terpadu MOS (MOS IC), dengan alasan mudahnya fabrikasi MOSFET.[7]
Keuntungan MOSFET adalah sifatnya yang relatif rapat dan mudah diproduksi massal jika dibandingkan dengan transistor sambungan planar saingannya,[26] tetapi MOSFET merupakan teknologi yang benar-benar baru, menggunakannya berarti meninggalkan kemajuan yang telah Bell buat menggunakan transistor sambungan dwikutub (BJT). MOSFET juga awalnya lebih lambat dan lebih sulit diandalkan daripada BJT.[27]
Pada awal 1960-an, program penelitian teknologi MOS didirikan oleh Fairchild Semiconductor, RCA Laboratories, General Microelectronics (GMe, dipimpion oleh mantan insinyur Fairchild Frank Wanlass) dan IBM.[28] Pada 1962, Steve R. Hofstein dan Fred P. Heiman di RCA membuat cip sirkuit terpadu MOS yang pertama. Pada tahun berikutnya, mereka mengumpulkan semua pekerjaan mengenai FET yang sudah ada dan memberikan teori operasi MOSFET.[29] CMOS dikembangkan oleh Chih-Tang Sah dan Frank Wanlass di Fairchild pada tahun 1963.[30]
Pengumuman publik formal pertama mengenai keberadaan MOSFET sebagai teknologi potensial dilakukan pada tahun 1963. MOSFET lalu pertama kali dikomersialisasi oleh General Microelectronics (GMe) pada Mei 1964, diikuti oleh Fairchild pada Oktober 1964. Kontrak MOS pertama GMe adalah dengan NASA, yang menggunakan MOSFET untuk wahana antariksa dan satelit dalam program Interplanetary Monitoring Platform (IMP) dan Explorers Program.[28] Para MOSFET awal yang dikomersialisasi oleh GMe dan Fairchild merupakan perangkat saluran-p (PMOS) untuk penerapan logika dan switching.[6] Pada pertengahan dekade 1960-an, RCA sudah menggunakan MOSFET dalam produk konsumen mereka, di antaranya radio FM, televisi dan penguat.[31] Pada tahun 1967, peneliti dari Bell Labs, Robert Kerwin, Donald Klein dan John Sarace mengembangkan transistor MOS gerbang self-aligned (gerbang-silikon), yang peneliti dari Fairchild Federico Faggin dan Tom Klein kemudian adaptasi untuk sirkuit terpadu pada tahun 1968.[32]
Pengembangan MOSFET menyebabkan revolusi dalam teknologi elektronika, yang disebut revolusi MOS[33] atau revolusi MOSFET,[34] dan mendorong pertumbuhan teknologi dan ekonomi dalam industri semikonduktor yang berpusat di sekitar Kalifornia (termasuk yang kemudian dikenal sebagai Silicon Valley)[35] serta Jepang.[36]
Dampak komersial MOSFET menjadi signifikan sejak akhir 1960-an.[37] Ini menyebabkan revolusi dalam industri elektronik, yang sejak saat itu telah berdampak besar pada kehidupan sehari-hari.[38] Penemuan MOSFET telah disebut sebagai awal dari elektronika modern[39] dan penting bagi revolusi mikrokomputer.[40]
MOSFET membentuk dasar dari elektronika modern,[41] dan merupakan unsur dasar dari kebanyakan peralatan elektronik modern.[42] MOSFET adalah transistor yang plaing umum dalam elektronika,[11] dan adalah alat semikonduktor yang paling banyak digunakan di dunia.[43] MOSFET telah digambarkan sebagai "kuda penggerak industri elektronik"[44] dan "teknologi dasar" akhir abad ke-20 sampai awal abad ke-21.[8] Penskalaan dan miniaturisasi MOSFET telah menjadi faktor utama di balik pertumbuhan cepat teknologi semikonduktor elektronik sejak 1960-an,[45] dan miniaturisasi MOSFET yang pesat membantu menambahkan densitas transitor, meningkatkan performa dan mengurangi konsumsi daya cip sirkuit terpadu dan perangkat elektronik sejak 1960-an.[46]
MOSFET telah digambarkan sebagai transistor yang paling penting,[2] perangkat paling penting dalam industri elektronik,[47] perangkat paling penting dalam industri komputer,[48] salah satu perkembangan paling penting dalam teknologi semikonduktor,[49] dan mungkin penemuan paling penting dalam elektronika.[50] MOSFET telah menjadi bagian pembentuk mendasar dari elektronika digital modern,[8] selama revolusi digital,[51] revolusi informasi,[52] zaman informasi,[53] dan zaman silikon.[54][55] MOSFET telah menjadi pendorong di balik revolusi komputer, serta teknologi yang dimungkinkannya.[56][57][58] Kemajuan pesat dalam industri elektronik selama akhir abad ke-20 dan awal abad ke-21 diperoleh dengan penskalaan MOSFET (penskalaan Dennard dan hukum Moore), hingga ke tingkat nanoelektronik pada awal abad ke-21.[59] MOSFET merevolusi dunia selama zaman informasi, dengan densitasnya yang tinggi memungkinkan sebuah komputer dijalankan oleh beberapa cip IC kecil dan bukannya perlu memenuhi satu ruangan,[60] dan kemudian memungkinkan dibuatnya teknologi komunikasi digital seperti ponsel cerdas.[56]
MOSFET adalah perangkat yang paling banyak dibuat dalam sejarah.[61][62] MOSFET menghasilkan penjualan tahunan sebesar US$295 billion terhitung pada tahun 2015.[63] Di antara 1960 dan 2018, diperkirakan telah dibuat total 13 sextiliun transistor MOS, terhitung paling tidak 99,9% dari semua transistor.[61] Sirkuit terpadu digital seperti mikroprosesor dan perangkat memori berisi ribuan hingga milyaran MOSFET terpadu di masing-masing perangkat, menyediakan fungsi switching sederhana yang diperlukan untuk mengimplementasikan gerbang logika dan penyimpanan data. Terdapat juga perangkat memori yang berisi paling tidak satu triliun transistor MOS, seperti sebuah kartu memori microSD 256 GB, lebih besar dari banyak bintang dalam galaksi Bima Sakti.[44] Sampai 2010, prinsip operasi dari MOSFET modern tidak jauh berubah dari MOSFET pertama yang didemonstrasikan oleh Mohamed Atalla dan Dawon Kahng pada tahun 1960.[64][65]
Kantor Paten dan Merek Dagang Amerika Serikat menyebut MOSFET sebuah "penemuan terobosan yang mengubah hidup dan budaya di seluruh dunia"[56] dan Computer History Museum menyebutnya berjasa "selamanya mengubah pengalaman manusia."[8] MOSFET juga merupakan dasar untuk terobosan-terobosan pemenang Penghargaan Nobel seperti efek Hall kuantum[66] dan peranti tergandeng–muatan (CCD),[67] meskipun tidak ada Penghargaan Nobel yang diberikan untuk MOSFET itu sendiri.[68] Dalam catatan 2018 mengenai Penghargaan Nobel Fisika Jack Kilby untuk perannya dalam penemuan sirkuit terpadu, Royal Swedish Academy of Sciences secara khusus menyebutkan MOSFET dan mikroprosesor sebagai penemuan penting lainnya dalam evolusi mikroelektronika.[69] MOSFET juga dimasukkan dalam daftar peristiwa penting dalam elektronika IEEE,[70] dan penemunya Mohamed Atalla dan Dawon Kahng masuk ke dalam National Inventors Hall of Fame pada tahun 2009.[11][12]
Biasanya bahan semikonduktor pilihan adalah silikon, tetapi beberapa produsen IC, terutama IBM, mulai menggunakan campuran silikon dan germanium (SiGe) sebagai kanal MOSFET. Sayangnya, banyak semikonduktor dengan karakteristik listrik yang lebih baik daripada silikon, seperti galium arsenid (GaAs), tidak membentuk antarmuka semikonduktor-ke-isolator yang baik sehingga tidak cocok untuk MOSFET. Hingga kini terus diadakan penelitian untuk membuat isolator yang dapat diterima dengan baik untuk bahan semikonduktor lainnya.
Untuk mengatasi peningkatan konsumsi daya akibat kebocoran arus gerbang, dielektrik κ tinggi menggantikan silikon dioksida sebagai isolator gerbang, dan gerbang logam kembali digunakan untuk menggantikan polisilikon.[71]
Gerbang dipisahkan dari kanal oleh lapisan tipis isolator yang secara tradisional adalah silicon dioksida, tetapi yang lebih maju menggunakan teknologi silicon oxynitride. Beberapa perusahaan telah mulai memperkenalkan kombinasi dielektrik κ tinggi + gerbang logam di teknologi 45 nanometer.
Berbagai simbol digunakan untuk MOSFET. Desain dasar umumnya garis untuk saluran dengan kaki sumber dan cerat meninggalkannya di setiap ujung dan membelok kembali sejajar dengan kanal. Garis lain diambil sejajar dari kanal untuk gerbang. Kadang-kadang tiga segmen garis digunakan untuk kanal peranti moda pengayaan dan garis lurus untuk moda pemiskinan.
Sambungan badan jika ditampilkan digambar tersambung ke bagian tengan kanal dengan panah yang menunjukkan PMOS atau NMOS. Panah selalu menunjuk dari P ke N, sehingga NMOS (kanal-N dalam sumur-P atau substrat-P) memiliki panah yang menunjuk kedalam (dari badan ke kanal). Jika badan terhubung ke sumber (seperti yang umumnya dilakukan) kadang-kadang saluran badan dibelokkan untuk bertemu dengan sumber dan meninggalkan transistor. Jika badan tidak ditampilkan (seperti yang sering terjadi pada desain IC desain karena umumnya badan bersama) simbol inversi kadang-kadang digunakan untuk menunjukkan PMOS, sebuah panah pada sumber dapat digunakan dengan cara yang sama seperti transistor dwikutub (keluar untuk NMOS, masuk untuk PMOS).
Kanal-P | ||||
Kanal-N | ||||
JFET | MOSFET pengayaan | MOSFET pemiskinan |
Untuk simbol yang memperlihatkan saluran badan, di sini dihubungkan internal ke sumber. Ini adalah konfigurasi umum, tetapi tidak berarti hanya satu-satunya konfigurasi. Pada dasarnya, MOSFET adalah peranti empat saluran, dan di sirkuit terpadu banyak MOSFET yang berbagi sambungan badan, tidak harus terhubung dengan saluran sumber semua transistor.
MOSFET adalah transistor berbasis medan yang menggunakan lapisan semikonduktor tipe N atau P sebagai kanal pengendali aliran arus listrik. Struktur MOSFET terdiri dari terminal gate (G), source (S), dan drain (D), serta lapisan isolator oksida logam (MOS) antara gate dan kanal semikonduktor. Prinsip kerja MOSFET didasarkan pada kendali medan listrik pada kanal semikonduktor untuk mengendalikan aliran arus.
Ketika tegangan yang sesuai diberikan ke terminal gate, medan listrik terbentuk di dalam lapisan semikonduktor, yang mengubah konduktivitas kanal. Ada dua tipe MOSFET yang umum digunakan: MOSFET tipe enhancement (peningkatan) dan MOSFET tipe depletion (pemadatan). MOSFET tipe enhancement membutuhkan tegangan gate yang lebih tinggi untuk membuka aliran arus, sedangkan MOSFET tipe depletion membutuhkan tegangan gate yang lebih rendah untuk menutup aliran arus.
Untuk informasi lebih lanjut, lihat referensi berikut.[72]
Parameter | nMOSFET | pMOSFET | |
---|---|---|---|
Source/drain type | n-type | p-type | |
|
n-type | p-type | |
|
Polysilicon | n+ | p+ |
Metal | φm ~ Si conduction band | φm ~ Si valence band | |
Well type | p-type | n-type | |
Tegangan ambang batas, Vth |
|
| |
Pembengkokan pita | Downwards | Upwards | |
Pembawa lapisan inversi | Electrons | Holes | |
Jenis substrat | p-type | n-type |
Struktur semikonduktor–logam–oksida sederhana diperoleh dengan menumbuhkan selapis oksida silikon di atas substrat silikon dan mengendapkan selapis logam atau silikon polikristalin. Karena oksida silikon merupakan bahan dielektrik, struktur MOS serupa dengan kondensator planar dengan salah satu elektrodenya digantikan dengan semikonduktor.
Ketika tegangan diterapkan membentangi struktur MOS, tegangan ini mengubah penyebaran muatan dalam semikonduktor. Umpamakan sebuah semikonduktor tipe-p (dengan NA merupakan kepadatan akseptor, p kepadatan lubang; p = NA pada badan netral), sebuah tegangan positif dari gerbang ke badan membuat lapisan pemiskinan dengan memaksa lubang bermuatan positif untuk menjauhi antarmuka gerbang-isolator/semikonduktor, meninggalkan daerah bebas pembawa. Jika cukup tinggi, kepadatan tinggi pembawa muatan negatif membentuk lapisan inversi dibawah antarmuka antara semikonduktor dan isolator. Umumnya, tegangan gerbang dimana kepadatan elektron pada lapisan inversi sama dengan kepadatan lubang pada badan disebut tegangan ambang.
Struktur badan tipe-p ini adalah konsep dasar dari MOSFET tipe-n, yang mana membutuhkan penambahan daerah sumber dan cerat tipe-n.
Sebuah transistor efek-medan semikonduktor–logam–oksida (MOSFET) adalah berdasarkan pada modulasi konsentrasi muatan oleh kapasitansi MOS di antara elektrode badan dan elektrode gerbang yang terletak di atas badan dan diisolasikan dari semua daerah peranti dengan sebuah lapisan dielektrik gerbang yang dalam MOSFET adalah sebuah oksida, seperti silikon dioksida. Jika dielektriknya bukan merupakan oksida, peranti mungkin disebut sebagai FET semikonduktor–logam–terisolasi (MISFET) atau FET gerbang–terisolasi (IGFET). MOSFET menyertakan dua saluran tambahan yaitu sumber dan cerat yang disambungkan ke daerah dikotori berat tersendiri yang dipisahkan dari daerah badan. Daerah tersebut dapat berupa tipe-p ataupun tipe-n, tetapi keduanya harus dari tipe yang sama, dan berlawanan tipe dengan daerah badan. Daerah sumber dan cerat yang dikotori berat biasanya ditandai dengan '+' setelah tipe pengotor. Sedangkan daerah yang dikotori ringan tidak diberikan tanda.
Jika MOSFET adalah berupa salur-n atau NMOS FET, lalu sumber dan cerat adalah daerah 'n+' dan badan adalah daerah 'p'. Maka seperti yang dijelaskan di atas, dengan tegangan gerbang yang cukup, di atas harga tegangan ambang, elektron dari sumber memasuki lapisan inversi atau salur-n pada antarmuka antara daerah-p dengan oksida. Kanal yang menghantar ini merentang di antara sumber dan cerat, dan arus dialirkan melalui kanal ini jika ada tegangan yang dikenakan di antara sumber dan cerat.
Jika tegangan gerbang dibawah harga ambang, kanal kurang terpopulasi dan hanya sedikit arus bocoran praambang yang dapat mengalir dari sumber ke cerat.
Operasi dari MOSFET dapat dibedakan menjadi tiga moda yang berbeda, bergantung pada tegangan yang dikenakan pada saluran. Untuk mempermudah, perhitungan dibawah merupakan perhitungan yang telah disederhanakan.[74][75]
Untuk sebuah MOSFET salur-n moda pengayaan, ketiga moda operasi adalah:
Disebut juga moda titik-potong atau pra-ambang, yaitu ketika VGS < Vth
Disebut juga sebagai daerah linear (atau daerah Ohmik[83][84]) yaitu ketika VGS > Vth dan VDS < ( VGS - Vth ).
Juga disebut dengan Moda Aktif[85][86]
Jenis-jenis MOSFET yang Umum Digunakan Ada beberapa jenis MOSFET yang umum digunakan, di antaranya:
MOSFET memiliki beberapa kelebihan dalam rangkaian elektronik, di antaranya:
MOSFET digunakan dalam berbagai aplikasi elektronik, di antaranya:
MOSFET memainkan peran yang sangat penting dalam berbagai aplikasi elektronik, baik dalam industri, otomotif, komputer, atau telekomunikasi. Keunggulan MOSFET dalam efisiensi, kecepatan, tegangan operasi, kestabilan termal, dan ukuran kecil menjadikannya pilihan utama dalam banyak desain rangkaian elektronik modern.
Penting untuk dicatat bahwa pemilihan MOSFET yang tepat harus mempertimbangkan spesifikasi dan kebutuhan aplikasi tertentu. Misalnya, dalam aplikasi daya tinggi, MOSFET dengan resistansi rendah dan kekuatan yang tinggi akan menjadi pilihan yang baik, sementara dalam aplikasi yang memerlukan switching cepat, MOSFET dengan waktu respons yang cepat akan menjadi yang terbaik.
Selain itu, MOSFET juga membutuhkan perlindungan yang tepat dalam rangkaian untuk mencegah kerusakan akibat arus berlebih, tegangan berlebih, atau panas berlebih. Penggunaan driver MOSFET yang tepat, penggunaan pendingin panas yang efektif, dan perlindungan terhadap lonjakan tegangan atau arus dapat membantu memperpanjang umur dan meningkatkan kinerja MOSFET
MOSFET gerbang ganda mempunyai konfigurasi tetroda, dimana semua gerbang mengendalikan arus dalam peranti. Ini biasanya digunakan untuk peranti isyarat kecil pada penggunaan frekuensi radio dimana gerbang kedua gerang keduanya digunakan sebagai pengendali penguatan atau pencampuran dan pengubahan frekuensi.
FinFET adalah sebuah peranti gerbang ganda yang diperkenalkan untuk memprakirakan flek kanal pendek dan mengurangi perendahan sawar diinduksikan-cerat.
Peranti MOSFET moda pemiskinan adalah MOSFET yang dikotori sedemikian rupa sehingga sebuah kanal terbentuk walaupun tidak ada tegangan dari gerbang ke sumber. Untuk mengendalikan kanal, tegangan negatif dikenakan pada gerbang untuk peranti salur-n sehingga "memiskinkan" kanal, yang mana mengurangi arus yang mengalir melalui kanal. Pada dasarnya, peranti ini ekivalen dengan sakelar normal-hidup, sedangkan MOSFET moda pengayaan ekivalen dengan sakelar normal-mati.[88]
Karena peranti ini kurang berdesah pada daerah RF dan penguatan yang lebih baik, peranti ini sering digunakan pada peralatan elektronik RF.
MOSFET salur-n lebih kecil daripada MOSFET salur-p untuk performa yang sama, dan membuat hanya satu tipe MOSFET pada kepingan silikon lebih murah dan lebih sederhana secara teknis. Ini adalah prinsip dasar dalam desain logika NMOS yang hanya menggunakan MOSFET salur-n. Walaupun begitu, tidak seperti logika CMOS, logika NMOS menggunakan daya bahkan ketika tidak ada pensakelaran. Dengan peningkatan teknologi, logika CMOS menggantikan logika NMOS pada tahun 1980-an.
MOSFET daya memiliki struktur yang berbeda dengan MOSFET biasa.[89] Seperti peranti semikonduktor daya lainnya. strukturnya adalah vertikal, bukannya planar. Menggunakan struktur vertikal memungkinkan transistor untuk bertahan dari tegangan tahan dan arus yang tinggi. Rating tegangan dari transistor adalah fungsi dari pengotoran dan ketebalan dari lapisan epitaksial-n, sedangkan rating arus adalah fungsi dari lebar kanal. Pada struktur planar, rating arus dan tegangan tembus ditentukan oleh fungsi dari dimensi kanal, menghasilkan penggunaan yang tidak efisien untuk daya tinggi. Dengan struktur vertikal, besarnya komponen hampir sebanding dengan rating arus dan ketebalan komponen sebanding dengan rating tegangan.
MOSFET daya dengan struktur lateral banyak digunakan pada penguat audio hi-fi. Kelebihannya adalah karakteristik yang lebih baik pada daerah penjenuhan daripada MOSFET vertikal. MOSFET vertikal didesain untuk penggunaan pensakelaran.
DMOS atau semikonduktor–logam–oksida terdifusi–ganda adalah teknologi penyempurnaan dari MOSFET vertikal. Hampir semua MOSFET daya dikonstruksi dengan teknologi ini.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.