Loading AI tools
metode laboratorium untuk memperbanyak sampel DNA Dari Wikipedia, ensiklopedia bebas
Reaksi berantai polimerase (bahasa Inggris: polymerase chain reaction, disingkat PCR) adalah salah satu metode untuk menciptakan jutaan hingga miliaran salinan dari segmen asam deoksiribonukleat (DNA) tertentu, yang memungkinkan ilmuwan untuk melipatgandakan sampel DNA yang sangat sedikit hingga mencapai jumlah yang cukup untuk dipelajari secara detail. Metode ini ditemukan pada tahun 1983 oleh Kary Mullis, ahli biokimia Amerika Serikat. Secara garis besar, sejumlah kecil urutan DNA diperbanyak secara eksponensial melalui rangkaian siklus perubahan suhu. Banyak pengujian biologi molekuler dan genetika dilakukan dengan PCR, misalnya analisis sampel DNA purba dan identifikasi agen infeksi. Saat ini, PCR merupakan teknik umum yang sangat diperlukan pada laboratorium medis, termasuk untuk riset biomedis dan kedokteran forensik.[1][2]
Sebagian besar PCR mengandalkan mesin pengatur siklus suhu. Mesin ini membuat bahan-bahan pereaksi mengalami siklus pemanasan dan pendinginan yang berulang. Hal ini memungkinkan terjadinya berbagai reaksi kimia yang bergantung pada suhu, khususnya pelelehan DNA dan replikasi DNA. Ada dua pereaksi utama yang digunakan dalam PCR, yaitu primer (fragmen DNA unting tunggal pendek oligonukleotida yang merupakan urutan komplemen wilayah DNA target) dan enzim DNA polimerase. Pada langkah pertama, dua unting DNA heliks ganda dipisahkan secara fisik pada suhu tinggi dalam proses yang disebut denaturasi asam nukleat. Pada langkah kedua, suhu diturunkan dan primer berikatan pada urutan DNA komplementer. Kedua unting DNA tersebut lalu menjadi templat yang ditempeli DNA polimerase untuk merakit unting DNA baru dari nukleotida bebas, bahan penyusun DNA yang ditambahkan sebagai pereaksi. Seiring dengan berlangsungnya PCR, salinan DNA yang dihasilkan dengan sendirinya menjadi templat untuk replikasi berikutnya sehingga tercipta reaksi berantai. Akhirnya, templat DNA asli diamplifikasi (diperbanyak) secara eksponensial.[3]
Hampir semua aplikasi PCR menggunakan DNA polimerase yang tahan panas, seperti Taq polimerase, enzim yang awalnya diisolasi dari bakteri termofilik Thermus aquaticus. Jika polimerase yang digunakan peka terhadap panas, enzim tersebut akan mengalami perubahan sifat pada suhu tinggi pada langkah denaturasi. Sebelum Taq polimerase dipakai, enzim DNA polimerase harus ditambahkan secara manual setiap siklus sehingga proses ini menjemukan dan mahal.[4]
Penerapan teknik ini termasuk kloning DNA untuk pengurutan DNA, manipulasi gen, dan mutagenesis gen; konstruksi pohon filogenetika berbasis DNA atau analisis fungsional gen; diagnosis dan pemantauan penyakit keturunan; amplifikasi DNA purba, analisis profil DNA (misalnya dalam ilmu forensik dan identifikasi orang tua); serta deteksi patogen untuk mendiagnosis penyakit menular.
Reaksi berantai polimerase mengamplifikasi bagian tertentu dari unting DNA (disebut sebagai target DNA). Sebagian besar PCR mengamplifikasi fragmen DNA yang panjangnya antara 0,1 dan 10 kilo pasangan basa (kbp), meskipun amplifikasi fragmen hingga 40 kbp juga dimungkinkan.[5] Jumlah produk hasil amplifikasi ditentukan oleh ketersediaan substrat dalam reaksi, yang makin terbatas seiring dengan berlangsungnya reaksi.[6]
Secara mendasar, PCR membutuhkan beberapa komponen dan reagen,[7] di antaranya
Komponen-komponen tersebut biasanya direaksikan dalam bentuk larutan bervolume 10–200 μl di dalam tabung reaksi kecil (volume 0,2–0,5 ml) yang diletakkan di dalam sebuah alat pengatur siklus suhu. Alat ini memanaskan dan mendinginkan tabung reaksi untuk mencapai suhu yang dibutuhkan pada setiap langkah reaksi (lihat di bawah). Banyak alat pengatur siklus suhu memanfaatkan efek Peltier, yang memungkinkan pemanasan dan pendinginan blok yang memuat tabung PCR hanya dengan membalikkan arus listrik. Tabung reaksi berdinding tipis memungkinkan konduktivitas termal yang menguntungkan untuk mencapai kesetimbangan termal yang cepat. Sebagian besar pengatur siklus suhu memiliki tutup yang dipanaskan untuk mencegah kondensasi di bagian atas tabung reaksi. Alat versi lama yang tidak memiliki penutup berpemanas perlu tambahan lapisan minyak di atas campuran reaksi atau bola lilin di dalam tabung.
Secara prinsip, PCR merupakan proses yang diulang-ulang antara 20–30 kali siklus sesuai kebutuhan. Setiap siklus terdiri atas tiga tahap. Berikut adalah tiga tahap kerja PCR dalam satu siklus:
Seusai tahap ketiga, siklus diulang kembali mulai tahap pertama. Akibat denaturasi dan renaturasi, beberapa unting baru (berwarna hijau) menjadi templat bagi primer lain. Akhirnya terdapat unting DNA yang panjangnya dibatasi oleh primer yang dipakai. Jumlah DNA yang dihasilkan berlimpah karena penambahan terjadi secara eksponensial.
Cara paling sederhana dalam melakukan analisis hasil reaksi berantai polimerase adalah dengan memasukkan hasil reaksi dan marka berat molekuler ke dalam sumuran dari gel agarose 0,8. Komposisi gelnya hanya sampai 4% dengan mengandung etidium bromida. Hasil reaksi dinampakkan dengan menggunakan transluminator ultraungu. Pada ukuran molekuler yang sesuai, bentuknya akan menyerupai pita.[10]
PCR dapat mengisolasi fragmen DNA tertentu dari keseluruhan genom dan mengamplifikasi wilayah DNA tersebut secara selektif. Penerapan PCR ini memungkinkan pengembangan teknik lainnya, seperti menghasilkan probe hibridisasi untuk blot Southern dan kloning DNA, yang membutuhkan jumlah DNA yang lebih banyak untuk mewakili wilayah DNA tertentu. PCR mendukung teknik-teknik ini dengan menyediakan sejumlah besar DNA murni sehingga analisis sampel DNA dapat dilakukan, bahkan dari bahan awal yang jumlahnya sangat kecil.
Aplikasi lain dari PCR termasuk pengurutan DNA untuk mengetahui urutan mereka setelah diamplifikasi oleh PCR. Urutan DNA yang diisolasi dipakai untuk mempercepat pengembangan teknologi DNA rekombinan yang melibatkan penyisipan urutan DNA ke dalam plasmid, fag, atau kosmid (tergantung ukuran) atau ke dalam materi genetik organisme lain. Koloni bakteri (seperti E. coli) dapat dengan cepat ditapis oleh PCR untuk menentukan konstruksi vektor DNA yang benar.[11] PCR juga dapat digunakan untuk sidik jari genetik; teknik forensik yang digunakan untuk mengidentifikasi seseorang atau suatu organisme dengan membandingkan DNA mereka melalui beberapa metode berbasis PCR.
Beberapa metode sidik jari PCR memiliki kemampuan diskriminatif yang tinggi dan dapat digunakan untuk mengidentifikasi hubungan genetik antarindividu, seperti orang tua dengan anaknya atau hubungan di antara saudara kandung, dan digunakan dalam pengujian paternitas. Teknik ini juga dapat digunakan untuk menentukan hubungan evolusi di antara organisme ketika jam molekuler tertentu digunakan (yaitu gen RNA ribosomal 16S dan gen recA pada mikroorganisme).[12]
Karena PCR mengamplifikasi wilayah DNA tertentu, metode ini dapat digunakan untuk menganalisis sampel yang jumlahnya sangat kecil. Ini merupakan hal penting dalam analisis forensik, ketika hanya sejumlah kecil DNA yang ditemukan sebagai bukti. PCR juga dapat digunakan dalam analisis DNA purba yang berusia puluhan ribu tahun. Teknik berbasis PCR telah berhasil digunakan pada hewan, seperti pada mamut berusia empat puluh ribu tahun, serta pada DNA manusia, seperti analisis mumi dari Mesir hingga identifikasi tsar Rusia dan tubuh Raja Inggris Richard III.[13]
PCR kuantitatif atau PCR waktu-sebenarnya (disingkat qPCR,[14] berbeda dengan RT-PCR) dapat memperkirakan kuantitas (jumlah) urutan DNA tertentu yang ada dalam sampel. Teknik ini sering diterapkan untuk menentukan tingkat ekspresi gen secara kuantitatif. PCR kuantitatif merupakan metode yang telah mapan untuk mengukur akumulasi produk DNA setelah setiap siklus amplifikasi.
PCR kuantitatif memungkinkan kuantifikasi dan deteksi urutan DNA tertentu dalam waktu yang sebenarnya karena mengukur konsentrasi produk saat proses sintesis sedang berlangsung. Ada dua metode pendeteksian dan penghitungan — yang terjadi secara bersamaan. Metode pertama terdiri dari penggunaan pewarna fluoresens yang dipertahankan secara nonspesifik di antara unting ganda. Metode kedua melibatkan probe yang menyandi urutan spesifik yang kemudian diberi label dengan fluoresens. Deteksi DNA menggunakan metode-metode ini hanya dapat dilihat setelah hibridisasi probe dengan DNA komplementernya terjadi. Kombinasi teknik yang bisa digunakan adalah PCR kuantitatif (qPCR) dan transkripsi balik (RT-PCR). Teknik ini, yang disebut RT-qPCR, memungkinkan penghitungan sejumlah kecil asam ribonukleat (RNA). Melalui teknik gabungan ini, RNA duta (mRNA) diubah menjadi DNA komplemen (cDNA), yang selanjutnya diukur menggunakan qPCR. Teknik ini menurunkan kemungkinan kesalahan pada titik akhir PCR,[15] dan meningkatkan kemungkinan deteksi gen yang diasosiasikan dengan penyakit genetik seperti kanker.[16] Laboratorium menggunakan RT-qPCR untuk mengukur regulasi gen dengan akurat. Dasar-dasar matematika yang digunakan untuk penghitungan pada PCR[17] dan RT-qPCR[18] memfasilitasi penerapan prosedur yang akurat bagi data eksperimental dalam penelitian, medis, diagnostik, dan penyakit menular.[19][20][21][22]
Calon orang tua dapat diuji untuk mengetahui statusnya sebagai pembawa genetik, atau anak-anak mereka dapat diuji apakah mereka menderita suatu penyakit genetik seperti fibrosis sistik. Sampel DNA untuk pengujian pralahir dapat diperoleh dengan amniosentesis, pengambilan sampel vilus korionik, atau bahkan dengan analisis sel janin langka yang beredar di aliran darah ibunya. Analisis PCR juga penting untuk diagnosis genetik praimplantasi, ketika sel-sel individu dari embrio yang sedang berkembang diuji mutasinya.
PCR memungkinkan diagnosis penyakit menular yang cepat dan sangat spesifik, termasuk yang disebabkan oleh bakteri atau virus.[25] PCR juga memungkinkan identifikasi mikroorganisme yang tidak dapat dibudidayakan atau tumbuh lambat seperti mikobakteri, bakteri anaerob, atau virus yang diperoleh dari kultur jaringan dan hewan model. Dasar untuk aplikasi diagnostik PCR dalam mikrobiologi adalah mendeteksi agen infeksi dan membedakan galur non-patogen dari galur patogen berdasarkan keberadaan gen tertentu.[25][26]
Karakterisasi dan deteksi organisme penyebab penyakit menular telah direvolusi oleh PCR, misalnya:
Perkembangan protokol sidik jari genetik (atau sidik jari DNA) berbasis PCR telah diterapkan secara luas dalam forensik:
PCR-RFLP merupakan pengembangan paling awal dari reaksi berantai polimerase. Pengembangannya diawali oleh penemuan enzim restriksi. PCR-RFLP bekerja dengan memanfaatkan spesifitas enzim restriksi yang akan memotong DNA sesuai dengan targetnya. Panjang fragmen DNA hasil pemotongan enzim restriksi akan berbeda seiring perbedaan genetik antar kromosom (individu) dan menunjukkan diversitas gen yang ada. PCR-RFLP digunakan dalam studi antropologi molekul untuk aplikasi data polimorfisme. Selain itu, teknik ini digunakan pada kedokteran forensik untuk menentukan dan mengetahui hubungan antarindividu.[33]
PASA (PCR Ampilification of Specific Alleles) merupakan suatu metode pengembangan reaksi berantai polimerase dengan sifat yang cepat dalam analisis mutasi DNA genomik yang telah diketahui. Teknik ini dikemukakan oleh Newton et al., pada tahun 1989. Nama lain PASA ialah allele-specific PCR (ASPCR) atau Amplification Refracory Mutation System (ARMS). Genotipe dapat dilakukan hanya dengan pemeriksaan campuran reaksi hasil elektroforesis gel agarosa. Metode PASA tidak rumit, nonisotopik dan hasilnya dapat diandalkan. PASA tidak membutuhkan digesti enzim restriksi untuk dapat membedakan heterozigot pada suatu lokus dengan homozigot di dalam salah satu alel. Selain itu, oligonukleotida spesifik alel dan analisis sekuensing dari produk PCR tidak dibutuhkan. Penelitian menggunakan metode PASA dapat dimulai dari polimorfisme mutasi titik apa saja dengan hasil yang sangat cermat. Secara umum, PASA dapat mendeteksi suatu salinan tunggal dari alel mutan dalam 40 salinan normalnya. Teknik ini hanya membutuhkan alel dengan ujung nukleotida 3’ dari primer PCR spesifik. PASA melakukan sintesis dalam dua bentuk primer. Bentuk pertama berupa refraktori terhadap PCR dari cetakan DNA mutan. Bentuk ini dianggap sebagai bentuk normal. Kedua, bentuk mutan refraktori terhadap PCR DNA normal. PASA secara umum digunakan pada penyakit turunan apa saja, karena memiliki kemampuan analisis secara langsung dari lokus mana saja yang diinginkan. Selain itu, PASA mampu melakukan diagnosis prenatal yang akurat dan mampu mendeteksi deteksi heterozigot.[34]
Metode PCR-SSCP (Single Strand Conformation Polymorphism) dikemukakan pertama kali oleh Orita et al., pada tahun 1989. Alat ini mengambil sedikit bagian dari produk PCR yaitu amplikon, kemudian melakukan denaturasi atasnya, dilanjutkan dengan elektroforesis melalui gel poliakrilamid non denaturasi. Struktur sekunder RNA yang bergantung deret akan terbentuk selama amplikon bergerak melalui gel dan menjauh dari denaturan. Amplikon yang mengandung perbedaan deret substitusional sama halnya akan memiliki mobilitas yang berbeda. PCR-SSCP adalah metode elektroforesis gel yang dapat mendeteksi mutasi dan polimorfisme tetapi tidak dapat mengkarakterisasinya. Prinsip analisis SSCP berdasarkan pada mobilitas elektroforetik molekul dalam matriks gel. PCR-SSCP sensitif terhadap ukuran, muatan, dan bentuk molekul. Pada kondisi nondenaturasi atau kondisi natif, struktur lipatan akan muncul dari interaksi intramolekular yang berdasarkan pada deret nukleotidan DNA untai tunggal. Dalam metode SSCP, target yang diamplifikasi dengan reaksi berantai polimerase berupa deret DNA. Radioisotop digunakan untuk menandai target. Selanjutnya, target didenaturasi, dan dipisahkan dalam bentuk untai tunggal dalam gel poliakrilamid nondenaturasi. Pergeseran mobilitas elektroforetik muncul lebih sering dibandingkan dengan tipe asli dari variasi deret DNA. Kemunculan pita baru dalam autoradiograf yang diperoleh membuat mutasi dapat dideteksi. Metode SSCP hanya membutuhkan teknik keahlian dan instrumentasi minimum karena prinsip kerjanya sangat sederhana bila dibandingkan dengan banyak teknik pemindaian mutasi lainnya.[35]
Hasil modifikasi amplifikasi reaksi berantai polimerase menghasilkan metode amplifikasi baru yang disebut metode LAMP. Modifikasi amplifikasi berantai polimerase menjadi metode LAMP hanya dilakukan pada suhu tetap. Bahan yang digunakan berupa empat sampai enam pasang primer gen dengan sekuensing konservasi tinggi pada spesies target.[36]
Metode yang mampu memperbanyak rangkaian DNA dibuat pertama kali oleh Kjell Kleppe dan Gobing Khrana pada 1968. Metode ini dikenal dengan nama reaksi berantai polimerase.[37] Metode ini pertama kali dibuat pada 1985 sebagai bagian dari rangkaian Proyek Genom Manusia.[38] Reaksi berantai polimerase disempurnakan oleh Kary Mullis pada 1986 untuk pengembangan ilmu biologi molekuler, khususnya bagi kedokteran forensik.[39] Mullis memperoleh penghargaan Nobel Kimia pada 1994 berkat temuannya tersebut.[40]
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.