From Wikipedia, the free encyclopedia
«Էկզոլուսին» կամ Էկզոարբանյակ, էկզոմոլորակի բնական արբանյակ։
Էկզոմոլորակի արբանյակ նկարչի ցուցադրության մեջ HD 28185 b:Մոլորակը գտնվում է բնակելիության գոտու ներքին սահմանին։ | |
Հետազոտման տվյալներ | |
---|---|
Տեսակ | աստղագիտական մարմինների տեսակ |
Տեսանելի աստղային մեծություն | (V) |
Աստղաչափություն | |
Բնութագիր | |
Ֆիզիկական տվյալներ | |
Ուղեծրի էլեմենտներ |
Շատ էկզոմոլորակներ ունեն էկզոլուսիններ, սակայն դրանք գտնելը բարդ աշխատանք է։ Չնայած էկզոմոլորակների որոնման մեծ հաջողություններին, էկզոլուսինները դժվար է գտնել ներկայիս առկա մեթոդներով։ Այսպիսով, տիրուհի աստղի սպեկտրում գծերի տեղաշարժով արբանյակներով մոլորակը հնարավոր չէ տարբերել միայնակ մոլորակից։ Այնուամենայնիվ, էկզոլուսին գտնելու մի քանի այլ եղանակներ կան, բայց դրանք անարդյունավետ են։
Անգամ էկզոմոլորակի ուղղակի դիտարկումը, խոչընդոտվում է ցանկացած մոլորակի և Մայր աստղի լուսավորության մեծ տարբերությամբ։ Այնուամենայնիվ, մակընթացային տաքացումով տաքացվող էկզոլուսինների ուղղակի դիտարկումները հնարավոր են արդեն գոյություն ունեցող տեխնոլոգիաներով[1]։
Երբ էկզոմոլորակն անցնում է իր աստղի դիմացով, աստղի տեսանելի փայլը փոքր-ինչ նվազում է։ Այս էֆեկտի մեծությունը համաչափ է մոլորակի շառավղի քառակուսուն։ Այս մեթոդով հայտնաբերված ամենափոքր օբյեկտը Գլիզե 436 Բ-ն է՝ Նեպտունի չափ։ Մեր արեգակնային համակարգի արբանյակների չափի էկզոլուսինները չեն կարողանա հայտնաբերել նույնիսկ պլանավորված տիեզերական աստղադիտակները։
2013 թվականի դրությամբ էկզոլուսինը գտնելու համար ամենահարմար գործիքը «Կեպլեր» ուղեծրային աստղադիտակն է, որը հետևում է մոտավորապես 150 000 աստղերի։ Կան մի շարք աշխատանքներ, որոնք նվիրված են նրա օգնությամբ էկզոլուսին փնտրմանը[2]։ 2009 թվականին կանխատեսվել էր, որ «Կեպլերը» կկարողանա հայտնաբերել 0,2 երկրային զանգվածով արբանյակներ (10 անգամ ավելի զանգվածային, քան Արեգակնային համակարգի ամենազանգվածային արբանյակները)[3]։ Բայց 2013 թվականի աշխատանքի համաձայն, մինչև 25 երկրային մոլորակների կարմիր թզուկների համակարգերում նույնիսկ 8-10 երկրային արբանյակները կարող են հայտնաբերվել միայն 25-50% հավանականությամբ[2]։
Հայտնի են էկզոմոլորակների սպեկտրների ուսումնասիրության մի քանի հաջողված դեպքեր, ներառյալ HD 189733 A b-ն և HD 209458 b-ն։ Մոլորակների համար սպեկտրալ տվյալների որակը շատ ավելի վատ է քան աստղերի համար, և այժմ անհնար է առանձնացնել արբանյակի կողմից ներդրված սպեկտրի բաղադրիչը։
2008 թվականին Մոնակոյի համալսարանից Լյուիսը, Սաքեթը և Մարդլինգը առաջարկեցին պուլսար մոլորակների արբանյակների որոնման համար օգտագործել պուլսարի թայմինգը։ Հեղինակները կիրառել են այս մեթոդը PSR B1620-26 b-ի վրա և պարզել, որ եթե կայուն արբանյակ պտտվի այս մոլորակի շուրջ, ապա այն կարող է հայտնաբերվել, եթե մոլորակի և արբանյակի միջև հեռավորությունը լինի մոլորակի և պուլսարի միջև հեռավորության 1/15 - ը, իսկ լուսնի և մոլորակի զանգվածի հարաբերակցությունը կլինի 5% կամ ավելի։
2008 թվականին աստղագետ Դեյվիդ Քիփինգը հոդված է հրապարակել այն մասին, թե ինչպես կարելի է համատեղել միջին տարանցման ժամանակի փոփոխության բազմաթիվ դիտարկումները տարանցման տևողության ժամանակի փոփոխությունների հետ, ինչը թույլ կտա նույնականացնել էկզոլուսնի եզակի ստորագրությունը։ Ավելին, աշխատանքը ցույց է տվել, թե ինչպես կարելի է որոշել էկզոլուսնի զանգվածը և դրա հեռավորությունը մոլորակից՝ օգտագործելով այս երկու էֆեկտները։ Հեղինակը փորձել է այս մեթոդը Glise 436 b-ի վրա և ցույց է տվել, որ այս մոլորակի համար երկրային զանգվածի արբանյակի ժամանակային ազդեցությունը հնարավոր է գտնել 20 վայրկյանի ընթացքում։
Էկզոլուսին գտնելու և դիտելու դժվարության պատճառով դրանց հատկությունները մնում են քիչ հայտնի։ Դրանք պետք է շատ տարբեր լինեն, ինչպես նաև մեր արեգակնային համակարգում մոլորակների արբանյակների հատկությունները։
Միջազգային աստղագիտական միությունը դեռ չի հաստատել էկզոլուսինների անվանացանկի համակարգը, քանի որ դրանցից դեռ շատ քիչ բան է հայտնի։ Նման համակարգը կարող է օգտագործել կամ արաբական կամ հռոմեական թվանշաններ նշելու համար՝ համարը բարձրացնելով ըստ արբանյակների հայտնաբերման կամ արբանյակի հեռավորությունից մինչև հայրենի մոլորակ։ Օրինակ, եթե արբանյակները հայտնաբերեն 51 Pegasus b-ի շուրջ, ապա դրանք կկոչվեն կամ ՝ «51 Pegasus b 1», «51 Pegasus b 2» և այլն, կամ ՝ «51 Pegasus b I», «51 Pegasus b II» և այլն։
Գոյություն ունի մոդել, որը թույլ է տալիս գնահատել արբանյակների ընդհանուր զանգվածը՝ կախված մոլորակի զանգվածից, որի շուրջ նրանք պտտվում են, դրանց առավելագույն քանակը և ուղեծրերի պարամետրերը։ Մոդելը հիմնված է արեգակնային համակարգի հսկա մոլորակների արբանյակների զանգվածի էմպիրիկորեն հաստատված կախվածության վրա հենց մոլորակների զանգվածից։ Միջին հաշվով, արբանյակների զանգվածը կազմում է մոլորակի մոտ 0,0001 զանգված ՝ անկախ արբանյակների քանակից և արբանյակների վրա զանգվածի բաշխումից[4]։
Հաշվարկները և համակարգչային մոդելավորումը ցույց են տվել, որ այս գործընթացում մնացած բոլոր արբանյակների զանգվածի վերջնական հարաբերակցությունը մոլորակի զանգվածին կազմում է 10−4 մոլորակի զանգված նախնական պայմանների լայն տիրույթում[5]։
Արդյունքները լրացուցիչ սահմանափակումներ են մտցնում գազային հսկաների և այլ աստղերի զանգվածների վրա ՝ նրանց արբանյակների վրա երկրային կյանքի հնարավորության համար։ Դրանցից մեկն այն է, որ այս տեսակի կյանքի համար անհրաժեշտ է բավականաչափ խիտ մթնոլորտ, ինչպիսին է երկիրը։ Արբանյակը պետք է ունենա բավարար զանգված և, որպես հետևանք, բավարար ձգողական ուժ մակերեսի վրա, որպեսզի մթնոլորտը չթուլանա արտաքին տարածության մեջ։ Օրինակ, որպեսզի արբանյակը ունենա երկրի զանգված, գազային հսկան պետք է ունենա առնվազն 31 Յուպիտերի զանգված (և որոշ լրացուցիչ ցածր զանգվածային արբանյակներով, որոնք նման են Յուպիտերի և Սատուրնի արբանյակներին, 32-33), ըստ էության, լինելով միջին զանգվածային շագանակագույն թզուկ։
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.