szám, amely osztóinak összege kisebb magánál a számnál From Wikipedia, the free encyclopedia
A számelméletben hiányos számnak nevezünk minden olyan n egészt, amelyre az osztóösszeg-függvény σ(n)<2n , vagy a valódi osztók összege s(n)<n.
A szám és az osztók összegének különbsége [más szóval 2n ‒ σ(n)] a hiányosság mértéke. Az olyan számokat, amelyek csak 1-gyel nagyobbak valódi osztóik összegénél, legkevésbé hiányos számoknak vagy majdnem tökéletes számoknak nevezzük. A természetes számok 3 osztályba sorolása (hiányos számok, tökéletes számok és bővelkedő számok) elsőként Nikomakhosz görög matematikusnál jelenik meg, 100 körül megjelent, Introductio Arithmetica („Bevezetés az aritmetikába”) című művében. Az első néhány hiányos szám:
1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 19, 21, 22, 23, 25, 26, 27, 29, 31, 32, 33, 34, 35, 37,…(A005100 sorozat az OEIS-ben)
Vegyük például a 21-et. Osztói 1, 3, 7 és 21, ezek összege 32. Mivel 32 kisebb, mint 2 × 21, a 21 hiányos szám. A hiányosság mértéke 2 × 21 − 32 = 10.
Végtelen sok hiányos szám létezik, páros és páratlan egyaránt; többek között minden prím és prímhatvány az.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.