feltételezett létezésű anyag From Wikipedia, the free encyclopedia
A sötét anyag olyan anyagfajta, amely csillagászati műszerekkel közvetlenül nem figyelhető meg, mert semmilyen elektromágneses sugárzást nem bocsát ki és nem nyel el, jelenlétére csak a látható anyagra és a háttérsugárzásra kifejtett gravitációs hatásból következtethetünk. A Világegyetem tömegének csupán 4,6%-át alkotja a megfigyelhető anyag, 23% a sötét anyag aránya, és 72% a sötét energia.
A sötét anyag létezését először Jacobus Kapteyn holland csillagász tételezte fel 1922-ben.[1][2] A hipotézist kollégája, Jan Oort részletesebben is kifejtette 1932-ben a Tejútrendszerre vonatkozó vizsgálódásai alapján.[2][3][4] Az elméletet Fritz Zwicky svájci asztrofizikus 1934-ben a gyakorlatban is megfigyelte a Coma galaxishalmaz vizsgálata nyomán. A galaxishalmaz szélén levő galaxisok sebességéből és a galaxishalmaz fényességéből, valamint a galaxisok száma alapján két tömegbecslést adott. A kettőt összehasonlítva látta, hogy a sebességeloszlásból számított tömeg 400-szor nagyobb, mint a távcsővel mért. Ezért volt szükség bevezetni a sötét anyag fogalmát: ez az anyag távcsővel nem látszik, viszont elég nagy tömegű, hogy a megfigyelt sebességeloszlást magyarázza.
1970-ben Vera Rubin a Department of Terrestrial Magnetism (DTM) („földmágnesség”) osztályon dolgozott a Carnegie Institute of Washington intézetben. A DTM igazgatója, Kent Ford csillagász akkor alkotott meg egy új, nagy sebességű, széles spektrumú spektrográfot, amivel egyetlen nap alatt 8-10 mérést lehetett elvégezni (az akkoriban használt műszerek csak napi 1 mérésre voltak képesek).
1970. március 27-én Vera Rubin a DTM távcsövét az Androméda-galaxisra irányította. Ellenőrizni szerette volna, hogy az Androméda milliónyi csillaga úgy mozog-e, ahogyan az elméletek leírják.
A spektrográf a csillagokban lévő kémiai elemeknek megfelelő hullámhosszakon vonalakat rajzolt egy papírra, amit Rubin mikroszkópon keresztül tudott elemezni. Ismert volt számára, hogy a kirajzolt vonalak annak megfelelően tolódnak el följebb vagy lejjebb a frekvenciaskálán, hogy az adott csillag felénk közeledik vagy távolodik-e, a Doppler-effektushoz hasonlóan (relativisztikus Doppler-effektus).
Rubin kíváncsi volt rá, hogy a Doppler-hatás alapján meg tudja-e határozni a csillagok sebességét távoli galaxisokban.
Azt tapasztalta, hogy az Androméda szélén lévő csillagok is épp olyan gyorsan mozogtak, ahogy a galaxis közepén lévők. Ez azonban nem felelt meg az elméletekből következő várakozásoknak.
A következő két hónapban 200 mérést rögzített papíron. Minden más galaxis esetén is hasonló eredményt kapott. Az összes sebesség „hibás” volt. A fizika ismert törvényeinek megfelelve ezek a csillagok túl gyorsan mozogtak, jó néhányuk esetén a gravitáció nem lett volna elég, hogy a pályájukon tartsa őket, ki kellett volna repülniük az intergalaktikus térbe. Valami azonban mégis a galaxisban tartotta a csillagokat.
Rubin számára két lehetséges ok kínálkozott:
Rubin a második magyarázatot választotta, és a „fölös” anyagot sötét anyagnak nevezte el (mivel nem volt látható, sem kimutatható).
Számításai szerint a világegyetem 90%-ban sötét anyagból áll. Elméletét 1975-ben ismertette az American Astronomical Society találkozóján.
A tudományos világnak ennek az elméletnek az elfogadásához egy évtized kellett.[5]
A sötét anyag jelenlétére jelenleg a következő megfigyelésekből következtethetünk:
Alkotórészei alapján feloszthatjuk barionos és nem barionos sötét anyagra. A barionos sötét anyag lehet:
Az Európai Űrügynökség (ESA) által a légkör fölé telepített IR spektroszkóppal sikerült kimutatni az atomos hidrogén mennyiségének 5-15-szörösét az NGC 891 számú, élével felénk néző galaxisban, amely mennyiség elegendő a hiányzó anyag molekuláris hidrogénként való értelmezéséhez.[7]
A nembarionos sötét anyag lehet:
A barionos és a nem barionos sötét anyag arányát a kozmikus háttérsugárzás fluktuációjából lehet megállapítani. Ennek alapján a sötét anyag nem barionos, és valószínűleg teljesen újfajta részecske.
2008 tavaszán olasz fizikusok bejelentették, hogy a Gran Sasso-csúcs alatti alagútban lévő DAMA projekt (Dark Matter) detektoraival valószínűleg sikerült a sötét anyag részecskéinek árama által kiváltott fizikai jelenségeket detektálni, ugyanis két független érzékelő által szolgáltatott adatokban kimutatták az 1980-as években elméletileg megjósolt éves ingadozást, amely azzal függ össze, hogy Nap körüli pályáján a Föld fél évente a Nap galaxismag körüli mozgásával egyező, fél évenként pedig azzal ellentétes irányba mozog.[9]
A NASA Chandra űrtávcsöve pedig 2006-ban közvetett bizonyítékot talált a sötét anyag létezésére, a Lövedék halmaz néven ismert ütköző galaxisok anyageloszlását vizsgálva.[10][11]
Egyes csillagászok szerint a sötét anyag nem létezik, és a neki tulajdonított jelenségekre a gravitáció nagy távolságokon eltérő viselkedése a válasz. A MOND (Modified Newtonian Dynamics, módosított newtoni dinamika) elmélete szerint a gravitációs erő nagy távolságokon nem a távolság négyzetével, hanem csak a távolsággal arányos fordítottan.[12][13]
Az elmélet kritikusai szerint azonban ez egyrészt nem tudja megmagyarázni a galaxishalmazok gravitációs hatása révén létrejövő optikai lencsehatást,[14] másrészt nem ad arra magyarázatot, hogy a newtoni gravitáció szabálya miért változik meg nagy távolságban.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.