तारा निर्माण
अंतरिक्ष में तारों के बनने की प्रक्रिया। विकिपीडिया से, मुक्त विश्वकोश
तारा निर्माण वह प्रक्रिया है जिसके द्वारा अंतरतारकीय अंतरिक्ष में आणविक बादलों के भीतर घने क्षेत्र, जिन्हें कभी-कभी "तारकीय नर्सरी" या " तारा बनाने वाले क्षेत्र" कहा जाता है, ढह जाते हैं और तारे बनाते हैं। [1] खगोल विज्ञान की एक शाखा के रूप में, तारा निर्माण में तारे के निर्माण की प्रक्रिया के अग्रदूत के रूप में तारे के बीच के माध्यम (ISM) और विशाल आणविक बादलों (GMC) का अध्ययन शामिल है, और इसके तत्काल उत्पादों के रूप में पहले तारे और युवा तारकीय वस्तुओं का अध्ययन शामिल है। यह खगोल विज्ञान की एक अन्य शाखा ग्रह निर्माण से निकटता से संबंधित है। तारा गठन सिद्धांत, साथ ही एक तारे के गठन के लिए लेखांकन, बाइनरी सितारों के आंकड़ों और प्रारंभिक द्रव्यमान फलन के लिए भी जिम्मेदार होना चाहिए। अधिकांश तारे अलग-अलग नहीं बनते हैं बल्कि तारों के समूह के हिस्से के रूप में बनते हैं जिन्हें स्टार क्लस्टर या तारकीय संघ कहा जाता है। [2]
तारकीय नर्सरी
सारांश
परिप्रेक्ष्य

तारे के बीच का बादल

मिल्की वे जैसी सर्पिल आकाशगंगा में तारे, तारकीय अवशेष और गैस और धूल का एक फैलाना अंतरतारकीय माध्यम (ISM) होता है। तारे के बीच का माध्यम 10 −4 से 10 6 कण प्रति सेमी 3 से बना होता है और आमतौर पर द्रव्यमान द्वारा लगभग 70% हाइड्रोजन से बना होता है, जिसमें अधिकांश शेष गैस हीलियम से युक्त होती है। इस माध्यम को भारी तत्वों की ट्रेस मात्रा से रासायनिक रूप से समृद्ध किया गया है जो हीलियम के संलयन के माध्यम से सितारों से उत्पन्न और निकाले गए थे क्योंकि वे अपने मुख्य अनुक्रम जीवनकाल के अंत से आगे निकल गए थे। तारे के बीच के माध्यम के उच्च घनत्व वाले क्षेत्रों में बादल बनते हैं, या विसरित नीहारिकाएं, [3] जहां तारे का निर्माण होता है। [4] सर्पिलों के विपरीत, एक अण्डाकार आकाशगंगा लगभग एक अरब वर्षों के भीतर अपने अंतरतारकीय माध्यम के ठंडे घटक को खो देती है, जो आकाशगंगा को अन्य आकाशगंगाओं के साथ विलय के अलावा फैलाने वाली नीहारिकाओं के निर्माण से रोकती है। [5]
घनी नीहारिकाओं में जहां सितारों का उत्पादन हो रहा हैं, बहुत सारा हाइड्रोजन आणविक (एच 2) रूप में है, इसलिए इन नेबुला को आणविक बादल कहा जाता है। [4] हर्शल स्पेस ऑब्जर्वेटरी ने खुलासा किया है कि आणविक बादल में तंतु वास्तव में सर्वव्यापी हैं। घने आणविक तंतु, जो तारे के निर्माण की प्रक्रिया के केंद्र में हैं, गुरुत्वाकर्षण से बंधे हुए कोर में विभाजित हो जाएंगे, जिनमें से अधिकांश सितारों में विकसित होंगे। गैस की निरंतर अभिवृद्धि, ज्यामितीय झुकाव और चुंबकीय क्षेत्र फिलामेंट्स के विस्तृत विखंडन तरीके को नियंत्रित कर सकते हैं। सुपरक्रिटिकल फिलामेंट्स में अवलोकनों ने घने कोर की अर्ध-आवधिक श्रृंखलाओं का खुलासा किया है, जिसमें फिलामेंट की आंतरिक चौड़ाई के बराबर अंतर है, और इसमें बहिर्वाह के साथ सन्निहित पहले तारे शामिल हैं। [6] अवलोकनों से संकेत मिलता है कि सबसे ठंडे बादल कम द्रव्यमान वाले तारे बनाते हैं, जो पहले बादलों के अंदर अवरक्त में देखे जाते हैं, फिर उनकी सतह पर दिखाई देने वाले प्रकाश में जब बादल फैलते हैं, जबकि विशाल आणविक बादल, जो आमतौर पर गर्म होते हैं, सभी द्रव्यमान के तारे उत्पन्न करते हैं। [7] इन विशाल आणविक बादलों में 100 कण प्रति सेमी 3 विशिष्ट घनत्व, 100 प्रकाश वर्ष (9.5×1014 कि॰मी॰) व्यास, 60 लाख तक का सौर द्रव्यमान ( M ☉ ), और औसत आंतरिक तापमान 10 के तक होता है। आकाशगंगा के कुल द्रव्यमान का लगभग आधा आणविक बादलों में पाया जाता है [8] और आकाशगंगा में अनुमानित 6,000 आणविक बादल हैं, जिनमें से प्रत्येक 100,000 M☉ से ज्यादा भार की हैं।[9] सूर्य की निकटतम नीहारिका जहां बड़े पैमाने पर तारे बन रहे हैं, ओरियन नेबुला, 1,300 प्रकाश वर्ष (1.2×1016 कि॰मी॰) दूर है। [10] हालांकि, ओफियुची बादल परिसर में लगभग 400-450 प्रकाश वर्ष दूर कम द्रव्यमान वाले तारे का निर्माण हो रहा है। [11]
तारे के निर्माण का एक अधिक घना स्थान घने गैस और धूल के अपारदर्शी बादल हैं जिन्हें बोक ग्लोब्यूल्स के रूप में जाना जाता है, जिसका नाम खगोलशास्त्री बार्ट बोक के नाम पर रखा गया है। ये ढहने वाले आणविक बादलों के साथ या संभवतः स्वतंत्र रूप से बन सकते हैं। [12] बोक गोलिकाएँ आमतौर पर एक प्रकाश वर्ष तक के होते हैं और इनमें कुछ कम सौर द्रव्यमान होते हैं । [13] उन्हें काले बादलों के रूप में देखा जा सकता है जो उज्ज्वल उत्सर्जन नीहारिकाओं या पृष्ठभूमि के सितारों से छुपे होते हैं। आधे से अधिक ज्ञात बोक गोलिकाओं में नए बनने वाले तारे पाए गए हैं। [14]

बादल का ढहना
गैस का एक अंतरतारकीय बादल तब तक हाइड्रोस्टेटिक संतुलन में रहता है जब तक गैस के दबाव की गतिज ऊर्जा आंतरिक गुरुत्वाकर्षण बल की संभावित ऊर्जा के साथ संतुलन में रहती है। गणितीय रूप से यह विरियल प्रमेय का उपयोग करके व्यक्त किया जाता है, जिसमें कहा गया है कि, संतुलन बनाए रखने के लिए, गुरुत्वाकर्षण संभावित ऊर्जा आंतरिक तापीय ऊर्जा के दोगुने के बराबर होनी चाहिए। [16] यदि कोई बादल इतना विशाल है कि उसका समर्थन करने के लिए गैस का दबाव अपर्याप्त है, तो बादल गुरुत्वाकर्षण के पतन से गुजरेगा। जिस द्रव्यमान से ऊपर बादल इस तरह के पतन से गुजरेगा उसे जीन्स द्रव्यमान कहा जाता है। जीन्स द्रव्यमान बादल के तापमान और घनत्व पर निर्भर करता है, लेकिन आम तौर पर हजारों से दसियों हजार सौर द्रव्यमान होता है। [4] बादल के ढहने के दौरान दर्जनों से दसियों हज़ार तारे एक साथ कमोबेश एक साथ बनते हैं जो तथाकथित सन्निहित तारकीय समूह में देखे जा सकते हैं। केंद्र के पतन का अंतिम उत्पाद सितारों का एक खुला समूह होता है। [17]

ट्रिगर किए गए तारे के निर्माण में , आणविक बादल को संपीड़ित करने और इसके गुरुत्वाकर्षण के पतन की शुरुआत करने के लिए कई घटनाओं में से एक हो सकता है। आण्विक बादल आपस में टकरा सकते हैं, या पास का सुपरनोवा विस्फोट एक ट्रिगर हो सकता है, जो चौंकाने वाले पदार्थ को बहुत तेज गति से बादल में भेज सकता है। [4] (परिणामस्वरूप नए सितारे स्वयं जल्द ही सुपरनोवा का उत्पादन कर सकते हैं, जिससे स्व-प्रसारित तारा निर्माण हो सकता है । वैकल्पिक रूप से, गांगेय टकराव तारे के निर्माण के बड़े पैमाने पर स्टारबर्स्ट को ट्रिगर कर सकते हैं क्योंकि प्रत्येक आकाशगंगा में गैस के बादल ज्वारीय बलों द्वारा संकुचित और उत्तेजित होते हैं। [19] बाद वाला तंत्र गोलाकार समूहों के निर्माण के लिए जिम्मेदार हो सकता है। [20]
एक आकाशगंगा के मूल में एक विशालकाय ब्लैक होल एक गांगेय नाभिक में तारे के निर्माण की दर को विनियमित करने का काम कर सकता है। एक ब्लैक होल जो गिरते हुए पदार्थ को जमा कर रहा है , सक्रिय हो सकता है, और एक टकराए हुए सापेक्षतावादी जेट के माध्यम से एक तेज हवा का उत्सर्जन कर सकता है। यह आगे तारा निर्माण को सीमित कर सकता है। निकट-प्रकाश गति से रेडियो-आवृत्ति-उत्सर्जक कणों को बाहर निकालने वाले विशाल ब्लैक होल भी उम्र बढ़ने वाली आकाशगंगाओं में नए सितारों के निर्माण को रोक सकते हैं। [21] हालाँकि, जेट के चारों ओर रेडियो उत्सर्जन भी तारे के निर्माण को गति प्रदान कर सकता है। इसी तरह, एक कमजोर जेट बादल से टकराने पर तारे के निर्माण को गति प्रदान कर सकता है।

जैसे ही यह ढहता है, एक आणविक बादल छोटे और छोटे टुकड़ों में एक श्रेणीबद्ध तरीके से टूट जाता है, जब तक कि टुकड़े तारकीय द्रव्यमान तक नहीं पहुंच जाते। इन टुकड़ों में से प्रत्येक में, गिरने वाली गैस गुरुत्वाकर्षण संभावित ऊर्जा की रिहाई से प्राप्त ऊर्जा को दूर कर देती है। जैसे-जैसे घनत्व बढ़ता है, टुकड़े अपारदर्शी हो जाते हैं और इस प्रकार अपनी ऊर्जा को विकीर्ण करने में कम कुशल होते हैं। यह बादल के तापमान को बढ़ाता है और आगे विखंडन को रोकता है। टुकड़े अब गैस के घूमने वाले क्षेत्रों में संघनित हो जाते हैं जो तारकीय भ्रूण के रूप में काम करते हैं। [23]
एक ढहते बादल की इस घटना को अशांति, मैक्रोस्कोपिक प्रवाह, रोटेशन, चुंबकीय क्षेत्र और बादल ज्यामिति के प्रभाव जटिल बनाते हैं। घूर्णन और चुंबकीय क्षेत्र दोनों बादल के ढहने में बाधा डाल सकते हैं। [24] [25] बादल के विखंडन के कारणों में अशांति महत्वपूर्ण है, और छोटे पैमाने पर यह इसके ढहने या पतन को बढ़ावा देती है। [26]
प्रोटोस्टार (पहला तारा)
सारांश
परिप्रेक्ष्य

जब तक गुरुत्वाकर्षण बाध्यकारी ऊर्जा को समाप्त किया जा सकता है, तब तक एक प्राथमिक तारकीय बादल टूटता रहेगा। यह अतिरिक्त ऊर्जा मुख्य रूप से विकिरण के माध्यम से खो जाती है। हालांकि, ढहने वाला बादल अंततः अपने स्वयं के विकिरण के लिए अपारदर्शी हो जाता है, और ऊर्जा को किसी अन्य माध्यम से हटाया जाना चाहिए। बादल में धूल 60–100 K तापमान तक गर्म हो जाती है, और ये कण दूर अवरक्त में तरंग दैर्घ्य पर विकिरण करते हैं जहां बादल पारदर्शी होता है। इस प्रकार धूल बादल के और पतन की मध्यस्थता करती है। [27]
पतन के दौरान, बादल का घनत्व केंद्र की ओर बढ़ता है और इस प्रकार मध्य क्षेत्र पहले वैकल्पिक रूप से अपारदर्शी हो जाता है। यह तब होता है जब घनत्व लगभग 10−13 g / cm3 होता है। एक कोर क्षेत्र, जिसे पहला हाइड्रोस्टेटिक कोर कहा जाता है, वहां बनता है जहां पतन अनिवार्य रूप से रुका हुआ होता है। यह विरियल प्रमेय द्वारा निर्धारित तापमान में वृद्धि जारी रखता है। इस अपारदर्शी क्षेत्र की ओर गिरने वाली गैस इससे टकराती है और झटके देने वाली तरंगे बनाती है जो इसके केंद्र को और गर्म करती है। [28]

जब कोर तापमान लगभग 2000 K तक पहुँच जाता है, तो तापीय ऊर्जा एच 2 अणुओं को अलग कर देती है। [28] इसके बाद हाइड्रोजन और हीलियम परमाणुओं का आयनीकरण होता है। ये प्रक्रियाएं संकुचन की ऊर्जा को अवशोषित करती हैं, जिससे यह फ्री फॉल वेलोसिटी पर पतन की अवधि के तुलनीय समय पर जारी रह सकती है। [29] गिरने वाली सामग्री का घनत्व लगभग 10 −8 g / cm 3 तक पहुंच जाने के बाद, वह सामग्री पर्याप्त रूप से पारदर्शी होती है जिससे पहले तारे द्वारा निकलने वाली ऊर्जा बाहर निकल जाती है। प्रोटोस्टार (पहले तारे) के भीतर संवहन और इसके बाहरी विकिरण के संयोजन से तारे को और अनुबंधित करने की अनुमति मिलती है। [28] यह तब तक जारी रहता है जब तक कि आंतरिक दबाव के लिए गैस पर्याप्त गर्म नहीं हो जाती है ताकि आगे गुरुत्वाकर्षण पतन के खिलाफ प्रोटोस्टार का समर्थन किया जा सके- एक स्थिति जिसे हाइड्रोस्टैटिक संतुलन कहा जाता है। जब यह अभिवृद्धि चरण लगभग पूरा हो जाता है, तो परिणामी वस्तु को प्रोटोस्टा (पहले तारे) के रूप में जाना जाता है। [4]

प्रोटोस्टार पर सामग्री का अभिवृद्धि आंशिक रूप से नवगठित परिस्थितिजन्य डिस्क से जारी है। जब घनत्व और तापमान काफी अधिक होता है, ड्यूटेरियम संलयन शुरू होता है, और परिणामी विकिरण का बाहरी दबाव धीमा हो जाता है (लेकिन रुकता नहीं है)। मेघ युक्त सामग्री प्रोटोस्टार पर "बारिश" करना जारी रखती है। इस चरण में बाइपोलर जेट उत्पन्न होते हैं जिन्हें हर्बिग-हारो वस्तु कहा जाता है। यह संभवत: वह साधन है जिसके द्वारा गिरने वाली सामग्री के अतिरिक्त कोणीय गति को निष्कासित कर दिया जाता है, जिससे तारा बनना जारी रहता है।

जब आसपास की गैस और धूल का आवरण फैल जाता है और अभिवृद्धि प्रक्रिया रुक जाती है, तो तारे को प्री-मेन-सीक्वेंस स्टार (पीएमएस स्टार) माना जाता है। मुख्य अनुक्रम सितारों में हाइड्रोजन जलने के विपरीत, इन वस्तुओं का ऊर्जा स्रोत गुरुत्वाकर्षण संकुचन है। पीएमएस स्टार हर्ट्ज़स्प्रंग-रसेल (एच-आर) आरेख पर एक हयाशी पथ का अनुसरण करता है। [31] संकुचन तब तक जारी रहता है जब तक हयाशी की सीमा समाप्त नहीं हो जाती है, और उसके बाद केल्विन-हेल्महोल्ट्ज़ टाइमस्केल पर संकुचन जारी रहता है और तापमान स्थिर रहता है। 0.5 M☉ द्रव्यमान से कम वाले सितारे उसके बाद मुख्य अनुक्रम में शामिल होते हैं। अधिक बड़े पैमाने पर पीएमएस सितारों के लिए, हयाशी ट्रैक के अंत में वे हेनी ट्रैक के बाद धीरे-धीरे हाइड्रोस्टेटिक संतुलन के निकट गिरते या ढहते जाते हैं। [32]
अंत में, हाइड्रोजन तारे के मूल में फ्यूज होना शुरू हो जाता है, और शेष आवरण सामग्री दूर हो जाती है। यह प्रोटोस्टेलर चरण को समाप्त करता है और एच-आर आरेख पर स्टार का मुख्य अनुक्रम चरण शुरू करता है।
1 M☉ या उससे कम के आसपास द्रव्यमान वाले सितारों में प्रक्रिया अच्छी तरह से परिभाषित हैं। उच्च द्रव्यमान वाले सितारों में, तारा निर्माण प्रक्रिया की लंबाई उनके विकास के अन्य समय के बराबर होती है, बहुत कम होती है, और प्रक्रिया इतनी अच्छी तरह से परिभाषित नहीं होती है। तारों के बाद के विकास का अध्ययन तारकीय विकास में किया जाता है।
टिप्पणियों
सारांश
परिप्रेक्ष्य

तारे के निर्माण के प्रमुख तत्व नग्न आंखो से नहीं दिखते और अन्य तरंग दैर्घ्य में देखने पर ही उपलब्ध होते हैं। तारकीय अस्तित्व का प्राथमिक चरण लगभग हमेशा आणविक बादलों से छोड़े गए गैस और धूल के घने बादलों के अंदर गहराई में छिपा होता है। अक्सर, ये तारा बनाने वाले कोकून जिन्हें बोक ग्लोब्यूल्स के रूप में जाना जाता है, को आसपास की गैस से उज्ज्वल उत्सर्जन के दूसरी तरफ परछाई में देखा जा सकता है। [33] किसी तारे के जीवन के प्रारंभिक चरणों को अवरक्त प्रकाश में देखा जा सकता है, जो दिखने वाले प्रकाश की तुलना में धूल में अधिक आसानी से प्रवेश कर जाता है। [34] इस प्रकार वाइड-फील्ड इन्फ्रारेड सर्वे एक्सप्लोरर (WISE) के अवलोकन कई गांगेय प्रोटोस्टार और उनके मूल तारा समूहों के अनावरण के लिए विशेष रूप से महत्वपूर्ण रहे हैं। [35] [36] ऐसे सन्निहित तारा समूहों के उदाहरण हैं एफएसआर 1184, एफएसआर 1190, कैमार्गो 14, कैमार्गो 74, मेज़ेस 64, और मेज़ेस 98। [37]

आणविक बादल की संरचना और प्रोटोस्टार के प्रभावों को निकट-आईआर विलुप्त होने के नक्शे (जहां सितारों की संख्या प्रति इकाई क्षेत्र में गिनी जाती है और आकाश के निकट शून्य विलुप्त होने वाले क्षेत्र की तुलना में गिनी जाती है), निरंतर धूल उत्सर्जन और कार्बन मोनोऑक्साइड और अन्य अणुओं के घूर्णी संक्रमण में देखा जा सकता है। ये अंतिम दोनो मिलीमीटर और सबमिलीमीटर रेंज में देखे जाते हैं। प्रोटोस्टार और प्रारंभिक तारे से विकिरण को अवरक्त खगोल विज्ञान तरंग दैर्घ्य में देखा जाना चाहिए, क्योंकि शेष बादल जिसमें तारा बन रहा है, की वजह से विलुप्त होने का कारण आमतौर पर इतना बड़ा होता है कि हम इसे स्पेक्ट्रम के दृश्य भाग में नहीं देख सकते हैं। यह काफी कठिनाइयाँ प्रस्तुत करता है क्योंकि पृथ्वी का वायुमंडल लगभग पूरी तरह से 20μm से 850μm तक अपारदर्शी है, जिसमें 200μm और 450μm पर संकीर्ण खिड़कियां हैं। इस सीमा के बाहर भी, वायुमंडलीय घटाव तकनीकों का उपयोग किया जाना चाहिए।

एक्स-रे अवलोकन युवा सितारों के अध्ययन के लिए उपयोगी साबित हुए हैं, क्योंकि इन वस्तुओं से एक्स-रे उत्सर्जन मुख्य-अनुक्रम सितारों से एक्स-रे उत्सर्जन से लगभग 100-100,000 गुना अधिक मजबूत है। [39] टी टॉरी सितारों से एक्स-रे का सबसे पहला पता आइंस्टीन एक्स-रे वेधशाला द्वारा लगाया गया था। [40] [41] कम द्रव्यमान वाले तारों के लिए एक्स-रे चुंबकीय पुन: संयोजन के माध्यम से तारकीय कोरोना के गर्म होने से उत्पन्न होते हैं, जबकि उच्च-द्रव्यमान वाले ओ और प्रारंभिक बी-प्रकार के सितारों के लिए तारकीय हवाओं में सुपरसोनिक झटके के माध्यम से एक्स-रे उत्पन्न होते हैं। चंद्रा एक्स-रे वेधशाला और एक्सएमएम-न्यूटन द्वारा कवर की गई नरम एक्स-रे ऊर्जा रेंज में फोटॉन गैस के कारण केवल मध्यम अवशोषण के साथ इंटरस्टेलर माध्यम में प्रवेश कर सकते हैं, जिससे एक्स-रे आणविक बादलों के भीतर तारकीय आबादी को देखने के लिए एक उपयोगी तरंग दैर्घ्य बन जाता है। तारकीय युवाओं के साक्ष्य के रूप में एक्स-रे उत्सर्जन इस बैंड को विशेष रूप से स्टार बनाने वाले क्षेत्रों में सितारों के सेंसर के प्रदर्शन के लिए उपयोगी बनाता है, यह देखते हुए कि सभी युवा सितारों में अवरक्त अतिरिक्तता नहीं होती है। [42] एक्स-रे अवलोकनों ने ओरियन नेबुला क्लस्टर और टॉरस मॉलिक्यूलर क्लाउड में सभी तारकीय-द्रव्यमान वस्तुओं के लगभग पूर्ण सेंसर प्रदान किए हैं। [43] [44]
अलग-अलग तारों का निर्माण केवल आकाशगंगा में ही प्रत्यक्ष रूप से देखा जा सकता है , लेकिन दूर की आकाशगंगाओं में इसके अद्वितीय वर्णक्रमीय हस्ताक्षर के माध्यम से तारे के गठन का पता लगाया गया है।
प्रारंभिक शोध से संकेत मिलता है कि युवा आकाशगंगाओं में अशांत गैस-समृद्ध पदार्थों में विशाल, घने क्षेत्रों के रूप में तारे बनाने वाले झुरमुट शुरू होते हैं, लगभग 500 मिलियन वर्ष जीवित रहते हैं, और एक आकाशगंगा के केंद्रीय उभार का निर्माण करते हुए एक आकाशगंगा के केंद्र में स्थानांतरित हो सकते हैं। [45]
21 फरवरी, 2014 को, नासा ने ब्रह्मांड में पॉलीसाइक्लिक एरोमैटिक हाइड्रोकार्बन (पीएएच) पर नज़र रखने के लिए एक बहुत उन्नत डेटाबेस की घोषणा की। वैज्ञानिकों के अनुसार, ब्रह्मांड में 20% से अधिक कार्बन पीएएच के साथ जुड़ा हो सकता है, जो कि जीवन के निर्माण के लिए संभावित प्रारंभिक सामग्री हो सकती है। ऐसा लगता है कि पीएएच बिग बैंग के तुरंत बाद बने हैं, पूरे ब्रह्मांड में व्यापक हैं, और नए सितारों और एक्सोप्लैनेट से जुड़े हैं। [46]
फरवरी 2018 में, खगोलविदों ने पहली बार, बिग बैंग के लगभग 180 मिलियन वर्ष बाद बनने वाले शुरुआती सितारों से आने वाले प्रकाश को अप्रत्यक्ष तरीके से दर्शाने वाले, पुनर्आयनीकरण युग के एक संकेत का पता लगाया। [47]
22 अक्टूबर, 2019 को प्रकाशित एक लेख में 3MM-1 का पता लगने की सूचना दी गई, जो लगभग 12.5 अरब प्रकाश वर्ष दूर एक विशाल तारा बनाने वाली आकाशगंगा है, जो धूल के बादलों से ढकी हुई है । [48] लगभग 10 10.8 सौर द्रव्यमान के द्रव्यमान में , इसने आकाशगंगा की तुलना में लगभग 100 गुना अधिक तारा बनने की दर दिखाई। [49]
कम द्रव्यमान और उच्च द्रव्यमान तारा निर्माण
सारांश
परिप्रेक्ष्य

माना जाता है कि अलग-अलग द्रव्यमान के तारे थोड़े अलग तंत्र द्वारा बनते हैं। कम द्रव्यमान वाले तारे के निर्माण का सिद्धांत, जो अवलोकन द्वारा अच्छी तरह से मान्य है, बताता है कि कम द्रव्यमान वाले तारे आणविक बादलों के भीतर घूर्णन घनत्व वृद्धि के गुरुत्वाकर्षण पतन से बनते हैं। जैसा कि ऊपर वर्णित है, गैस और धूल के एक घूर्णन बादल के ढहने से एक अभिवृद्धि चक्के का निर्माण होता है जिसके माध्यम से पदार्थ एक केंद्रीय प्रोटोस्टार (प्राथमिक तारे) पर प्रवाहित होता है। 8 M☉ से अधिक द्रव्यमान वाले सितारों के लिए तथापि, तारे के निर्माण के तंत्र को अच्छी तरह से नहीं समझा गया है।
बड़े पैमाने पर तारे भारी मात्रा में विकिरण उत्सर्जित करते हैं जो उसके अंदर गिरने वाली सामग्री के खिलाफ धक्का देते हैं। अतीत में, यह सोचा गया था कि यह विकिरण दबाव बड़े पैमाने पर प्रोटोस्टार पर अभिवृद्धि को रोकने और कुछ दसियों सौर द्रव्यमान से अधिक द्रव्यमान वाले सितारों के निर्माण को रोकने के लिए पर्याप्त हो सकता है। [52] हाल के सैद्धांतिक काम से पता चला है कि एक जेट और बहिर्वाह का उत्पादन एक गुहा को साफ करता है जिसके माध्यम से एक विशाल प्रोटोस्टार से अधिकांश विकिरण डिस्क के माध्यम से और प्रोटोस्टार पर अभिवृद्धि को बाधित किए बिना बच सकता है। [53] [54] वर्तमान सोच यह है कि बड़े पैमाने पर तारे उसी तरह के तंत्र द्वारा बनाने में सक्षम हो सकते हैं जिसके द्वारा कम द्रव्यमान वाले तारे बनते हैं।
इस बात के बढ़ते प्रमाण हैं कि कम से कम कुछ बड़े प्राथमिक तारे वास्तव में अभिवृद्धि डिस्क से घिरे हुए हैं। बड़े पैमाने पर तारा निर्माण के कई अन्य सिद्धांतों का परीक्षण अवलोकन के रूप में किया जाना बाकी है। इनमें से, शायद सबसे प्रमुख प्रतिस्पर्धी अभिवृद्धि का सिद्धांत है, जो बताता है कि बड़े प्राथमिक तारे को कम द्रव्यमान वाले प्रोटोस्टार द्वारा वस्तु दी जाती है (seeded) जो अन्य प्रोटोस्टार के साथ प्रतिस्पर्धा करते हैं, जो कि केवल एक छोटे से स्थानीय क्षेत्र की बजाय पूर पैतृक आणविक बादल से उर्जा ले रहे होते हैं। । [55] [56]
बड़े पैमाने पर तारे के निर्माण का एक अन्य सिद्धांत बताता है कि बड़े पैमाने पर तारे कम द्रव्यमान के दो या दो से अधिक तारों के संयोग से बन सकते हैं। [57]
यह सभी देखें
- Accretion – Accumulation of particles into a massive object by gravitationally attracting more matter
- शैम्पेन बहाव प्रतिरूप
- ब्रह्माँड निर्माण का कालक्रम– ब्रह्मांड का इतिहास और भविष्य
- सौर मंडल का गठन और विकास – तारकीय बादलों के गुर्त्वीय पतन से सौर मंडल का गठन और उसके बाद का भौगोलीय इतिहास
- Galaxy formation and evolution – from a homogeneous beginning, the formation of the first galaxies, the way galaxies change over time
- स्थानीय समूहों में तारा निर्माण क्षेत्रों की सूची – मंदाकिनी आकाशगंगा और अन्य स्थानीय क्षेत्रों में तारा निर्माण वाले क्षेत्रों की सूची।
- Star formation का रहस्य
- Magnetic Field का प्रभाव
संदर्भ
Wikiwand - on
Seamless Wikipedia browsing. On steroids.