Loading AI tools
गणित की शाखा विकिपीडिया से, मुक्त विश्वकोश
अवकल ज्यामिति (Differential geometry) गणित की एक विधा (discipline) है जो कैलकुलस तथा रेखीय तथा बहुरेखीय बीजगणित (multilinear algebra) का उपयोग करके ज्यामितीय समस्याओं का अध्ययन करती है। इसमें उन तलों और बहुगुणों (मैनीफ़ोल्ड्स) के गुणों क अध्ययन किया जाता है जो अपने किसी अल्पांश (एलिमेंट) के समीप स्थित हों जैसे किसी वक्र अथवा तल के गुणों का अध्ययन, उसके किसी बिंदु के पड़ोस में। मापीय अवकल ज्यमिति का संबंध उन गुणों से है जिनमें नापने की क्रिया निहित हो।
शास्त्रीय अवकल ज्यामिति में ऐसे वक्रों और तलों का अध्ययन किया जाता है जो त्रिविमीय यूक्लिडीय अवकाश (स्पेस) में स्थित हों। इसमें अवकल कलन (डिफ़रेंशियल कैल्क्युलस) और समाकलन (इनटेग्रल कैल्क्युलस) की विधियों का प्रयोग होता है; या यो कहिए कि इस विद्या में हम वक्रों और तलों के उन गुणों का अध्ययन करते हैं, जो त्रिविस्तारी गतियों में भी निश्चल (इनवैरियंट) रहते हैं।
विक्षेपात्मक अवकल ज्यामिति (प्रोजेक्टिव डिफ़रेशियल ज्योमेट्री) में हम किसी ज्यामितीय आकृति के किसी सार्विक अल्पांश (जेनरल एलिमेंट) के समीप उसके उन गुणों का अध्ययन करते हैं जिनमें किसी सार्विक विक्षेपात्मक रूपांतर (ट्रैसफ़ार्मेशन) से कोई विकार नहीं होता। जैसे किसी वक्र के ये गुण कि उसके किसी बिंदु पर स्पर्श रेखा अथवा आश्लेषण समतल (ऑस्क्युलेटिंग प्लेन) का अस्तित्व है अथवा नहीं, विक्षेपात्मक अवकलीय गुण हैं किंतु किसी तल का यह गुण कि उसपर अल्पांतरी (जिओडेसिक) का अस्तित्व है या नहीं, विक्षेपात्मक नहीं है, क्योंकि इसमें लंबाई का भाव निहित है जो विक्षेपात्मक नहीं है।
आकृतियों के विक्षेपात्मक अवकल गुणों के अध्ययन की कम से कम तीन विधियां निकल चुकी हैं जो इस प्रकार हैं:
(1) अवकल समीकरण,
(2) घाति-श्रेणी-प्रसार (पावर सीराज़ एक्स्पैंशन) और
(3) किसी बिंदु के विक्षेप निर्देशांकों (प्रोजेक्टिव कोऑर्डिनेट्स) का एक प्राचल (पैरामीटर) अथवा अवकल रूपों (डिफ़रेंशियल फ़ॉर्म्स) के पदों में प्रसार।
पहली और तीसरी विधियों में प्रदिश कलन (टेंसर कैल्क्युलस) का प्रयोग किय जा सकता है।
उपयुक्त निर्देश त्रिभुज (ट्राइऐंगिल ऑव रेफ़रेंस) चुनने से, जिसके चुनाव का ढंग अद्वितीय होगा, किसी समतल वक्र का समीकरण इस रूप में ढाला जा सकता है:
(समीकरण, इमेज के रूप में)
इस घात श्रेणी के समस्त गुणांक सार्विक विक्षेप रूपांतर के अंतर्गत, वक्र के परम निश्चल (ऐबसोल्यूट इनवैरियंट) हैं, अत: वे मूलबिंदु पर वक्र के समस्त विक्षेपात्मक अवकल गुणों को व्यक्त करते हैं। किसी वक्र के किसी बिंदु पर के स्पर्शी का भाव सुपरिचित है। मान लीजिए कि हम किसी वक्र के बिंदु पा के समीप चार अन्य बिंदु लेते हैं। जब ये चारों बिंदु पा की ओर अग्रसर होते हैं, तब इन पांचों बिंदुओं द्वारा खींचे गए शांकव (कॉनिक) की जो सीमास्थिति होगी, उसे वक्र के बिंदु पा पर, आश्लेषण शांकव (ऑस्कयुलेटिग कॉनिक) कहते हैं। इसी प्रकार एक समतल त्रिघाती (प्लेन क्यूबिक) के इस गुण की सहायता से कि उसका निर्धारण नौ स्वेच्छा (आबिट्रैरी) बिंदुओं से होता है, हम आश्लेषण त्रिघाती (ऑस्क्युलेटिग क्यूबिक) की परिभाषा दे सकते हैं। इस अध्ययन में, सीमा (लिमिट) के प्रयोग के कारण, कलन (कैल्क्युलस) बहुत काम में आता है।
साधारणतया त्रिविस्तारी विक्षेपात्मक अवकाश (थ्री-डाइमेंशनल प्रोजेक्टिव स्पेस) में अनंतस्पर्शी वक्रो (ऐसिम्पटोटिक कर्व्ज़) के दो एकप्राचल परिवार (वन-पैरामीटर फ़ैमिलीज) होते हैं। यदि दो से कम परिवार हों तो तल (सर्फेस) विकास्य (डिवेलपेबुल) होगा। यदि दो से अधिक हों तो तल एक समतल (प्लेन) होगा। यदि विकास्य तलों ओर समतलों को छोड़ दिया जाए और अनंतस्पर्शी रेखाओं को तल के प्राचलीय वक्र मान लिया जाए तो समघात निर्देशांक (होमोजीनियस कोआडिनेट्स) इस प्रकार चुने जा सकते हैं कि वे अवकल समीकरणों की निम्नलिखित संहति (सिस्टम) को संतुष्ट करें :
इन्हें फ़्यबिन के अवकल समीकरण (डिफ़रेशियल इक्वेशंस) कहते हैं। गुणाकं उ, ऊ प फ तल के निश्चल हैं।
किसी तल के विक्षेपात्मक गुणों में से एक गुण होता है उसका किसी अन्य तल से स्पर्शक्रम (ऑर्डर ऑव कॉनटैक्ट)। विशेषकर, द्विघात तलों का एक त्रिप्राचल परिवार होता है जिसका तल (पृष्ठ) पृ से किसी बिंदू मू पर द्वितीय क्रम का स्पर्श होता है। यदि द्विघाती (क्वॉड्रिक्स) इस प्रकार चुने जाएँ कि मू पर, प्रतिच्छेद वक्र के स्पर्शी, मू के अनंतस्पशियों के प्रति अभिध्रुवी (ऐपोलर) हो तो द्विघातियों को डार्बो द्विघाती (क्वॉड्रिक्स)3-बिंदु स्पर्शियों को डार्बो स्पर्शी कहते हैं। पृ के प्रत्येक बिंदु पर डार्बो द्विघातियों का एक एकप्राचल परिवार होता है। इसमें से बहुत विशेष प्रकार के द्विघाती होते हैं। कदाचित् ली द्विघाती (क्वॉड्रिक्स) सबसे रोचक होते हैं। इनका विवरण इस प्रकार दिया जा सकता है: मू के अनंतस्पर्शी वक्र व पर दो समीपस्थ बिंदु पा और पा2 लेकर तीनों बिंदुओं पर अनंतस्पर्शी वक्र के स्पर्शी खींचो। ये तीन स्पर्शी एक द्विघाती का निर्धारण करते हैं। जब पा और पा2 वक्र व के अनुदिश मू की ओर अग्रसर होते हैं, तब उक्त द्विघाती की सीमास्थिति को ली द्विघाती कहते हैं।
रेखाओं के किसी द्विप्राचल परिवार को सर्वांगसमता (कॉन्गुएँस) कहते हैं। उदाहरणत: किसी तल के मापात्मक अभिलंब (मोट्रिक नार्मल्स) एक सर्वांगसमता बनाते हैं। यदि पृ के किसी बिंदु मू का साहचर्य (ऐसोसिएशन) एक रेखा से है जिसकी स्थिति मू के साथ साथ बदलती रहती है तो ऐसी रेखाओं के संग्रह से एक सर्वांगसमता का निर्माण होता है। जब मू तल पृ के किसी उपयुक्त वक्र पर चलता है तब सर्वांगसमता की सहचर रेखा वक्र को स्पर्श करती है और इस प्रकार एक विकास्य तल का सृजन करती है। साधारणत: किसी तल पर ऐसे वक्रों के दो एकप्राचल परिवार होते हैं। सर्वांगसमता के विकास्य तलों से इनकी संगति बैठती है। अब मान लीजिए कि एक सर्वांगसमता का निर्माण तल पृ के बिंदुओं के मध्य से जानेवाली ऐसी रेखाओं से होता है जो उन बिंदुओं पर खींचे गए पृ के स्पर्शतलों पर स्थित नहीं हैं, तो किसी भी डार्बो द्विघाती के प्रति इन रेखाओं की व्युत्क्रम ध्रुवियाँ (रेसिप्रोकल पोलर्स) एक सर्वागसमता का निर्माण करती हैं जिसकी रेखाएँ पृ के स्पर्शसमतलों पर स्थित होती हैं, किंतु उनके स्पर्शबिंदुओ में से होकर नहीं जातीं। सर्वांगसमताओं के ऐसे जोड़ों को व्युत्क्रम सर्वांगसमताएँ (रेसिप्रोकल कॉनग्रुएँसेज़) कहते हैं। आज तक व्युत्क्रम सर्वांगसमताओं के बहुत से जोड़ों का अध्ययन हो चुका है। इन्हीं में से एक युग्म विल्ज़िस्की की नियत सर्वांगसमताओं (डाइरेक्ट्रिस कॉनग्रएँसेज़) का है। इनकी परिभाषा इस प्रकार दी जा सकती है: यदि त की व्युत्क्रम सर्वांगसमताओं की एक जोड़ी के विकास्यों के संगत वक्रों के दो कुलक (सेट्स) अभिन्न (कोइंसिडेंट) हो जाएँ तो उक्त सर्वांगसमताओं को विंल्जिस्की की नियत सर्वांगसमताएँ कहते हैं।
यह जानने के लिए कि विक्षेप ज्यामिति में सर्वागमताओं का क्या महत्त्व है, संयुग्मी जालों (कॉनजुगेट नेट्स) की कल्पना को भी समझ लेना आवश्यक है। इनकी परिभाषा हम इस प्रकार दे सकते हैं:
मान लीजिए, किसी तल पृ के किसी बिंदु के मध्य से अनंतस्पर्शी वक्र खींचे गए हैं, तो इस बिंदु का स्पर्शी और उक्त वक्रों पर उस बिंदु पर खींचे गए स्पर्शियों के प्रति उसका हरात्मक संयुग्मी (हार्मोनिक कॉनजुगेट), ये दोनों मिलकर संयुग्मी स्पर्शी कहलाते हैं। यदि संयुग्मी स्पर्शियों के किसी जोड़े में से एक को किसी एकप्राचल वक्रपरिवार के एक वक्र का स्पर्शी मान लिया जाए तो जोड़े का दूसरा स्पर्शी एक अन्य एकप्राचल वक्रपरिवार का स्पर्शी हो जाएगा।
वक्रों के ऐसे दो कुलकों से संयुग्मी जाल का निर्माण होता है। संयुग्मी जालों का एक अन्य लाक्षणिक गुण (कैरेक्टरिस्टिक प्रॉपर्टी) इन शब्दों में वयक्त हो सकता है: जब कोई बिंदु मू संयुग्मी जाल के एक वक्र पर चलता है तब जाल के दूसरे वक्र पर बिंदु मू पर खींचे गए स्पर्शी एक विकास्य तल का सृजन करते हैं। जब एक बिंदु तल त के किसी वक्र पर चलता है, तो उसका मापात्मक अभिलंब एक ऋजुरेखज (रूल्ड) तल का सृजन करता है। यदि वक्र के स्थान में वक्रतारेखा (लाइन ऑव कर्वेचर) लें तो यह ऋजुरेखज तल विकास्य हो जाता है। वक्रतारेखाओं द्वारा निर्मित जाल एक संयुग्मी जाल होता है और मापात्मक अभिलंब सर्वांगसमता (मेट्रिकनॉर्मल कॉनग्रुएँस) से उसकी संगति (कॉरेसपॉण्डेंस) बैठती है। हम इसी बात को इस प्रकार व्यक्त करते हैं कि मापात्मक अभिलंब सर्वांगसमता तल से संयुग्मी है।
विक्षेपात्मक अवकल ज्यमिति में बहुत सी सर्वांगसमताएँ ऐसी हैं जो सार्वीकृत अभिलंब सर्वांगसमताएँ (जेनरैलाइज्ड नॉर्मल कॉनग्रएँसेज़) कहला सकती हैं, क्योंकि सर्वागसमता का निर्धारण तल से होता है और वह तल से संयुग्मी रहती है। इन्हीं में से एक यथाकथित ग्रीन-फयूबिनी विक्षेप अभिलंब (प्रोजेक्टिव नॉर्मल) भी है।
वह वक्र जिसके स्पर्शी एक विकास्य तल का निर्माण करते हैं, तल की निशित कोर (कस्पिडल एज्) कहलाता है। मू के संयुग्मी स्पर्शियों के लाक्षणिक गुण से यह निष्कर्ष निकलता है कि जोड़े में से प्रत्येक स्पर्शी रश्मिबिंदु (रे पॉइंट) पर निशित कोर का स्पर्शी होता है। इस प्रकार जो दो रश्मिबिंदु प्राप्त होते हैं वे मू के जाल की एक रश्मि का निर्धारण करते हैं। जाल के वक्रों के बिंदु मू पर के आश्लेषण समतलों की प्रतिच्छेद रेखा जाल का अक्ष होती है। रश्मि तथा अक्ष और उनके द्वारा जनित सर्वागासमताओं का अध्ययन बहुत से व्यक्तियों ने किया है।
कुछ लोगों ने अल्पांतरियों की कल्पना का, यह देखकर कि इनका मापात्मक अवकल ज्यामिति में कितना महत्त्व है, विक्षेप ज्यामिति में प्रयोग करने का प्रयत्न किया है। प्रथम तो निश्चल अनुकल के बाह्मजों (एक्स्ट्रीमल्स) को विक्षेप अल्पांतरी कहते हैं। समस्त विक्षेप अल्पांतरियों के आश्लेषण समतल कक्षा 3 का एक शंकु (कोन) बनाते हैं। उक्त शंकु का निशित अक्ष ग्रीन और फ़्यूबिनी का विक्षेप अभिलंब होता है। अल्पिकाओं का एक अन्य सार्वीकरण सर्वागसमता के संयोग वक्र (यूनियन कर्व) में मिलता हैं। उक्त वक्र तल पृ का एक ऐसा वक्र होता है, जिसके प्रत्येक बिंदु का आश्लेषण समतल उस बिंदु की सर्वागसमता रेखा (लाइन ऑव कॉनग्रुएँस) के मध्य से जाता है।
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.