Loading AI tools
סך כל הריאקציות האנזימטיות של פירוק והבניה המתקיימות בתא החי מוויקיפדיה, האנציקלופדיה החופשית
מֶטָבּוֹלִיזְם (באנגלית: Metabolism; בעברית: חילוף חומרים) הוא מכלול התהליכים הכימיים-אנזימטיים המתרחשים ביצורים חיים, גם ברמת התא וגם ברמת היצור השלם. המושג מתייחס לקליטת חומרים מהסביבה, עיבודם, הפקת אנרגיה מהם ופליטת הפסולת. מטבוליזם הוא אחד המושגים הבסיסיים ביותר בביולוגיה, והוא מהווה את אחד התנאים להגדרת חיים (התנאים החשובים האחרים הם יכולת רבייה, גדילה, דנ"א, הומואסטזיס, אדפטציה, תגובה לגירויים מהסביבה, תנועה, ארגון והיסטוריה תאית). כשמתייחסים למטבוליזם של הגוף השלם הכוונה לסך התהליכים הכימיים המתרחשים ביצור חי, כולל מעבר חומרים אל תוך התאים וביניהם.
שיוך | תהליך ביולוגי |
---|---|
תיאור ב | המילון האנציקלופדי החדש |
מזהים | |
קוד MeSH | G03 |
מזהה MeSH | D008660 |
מערכת השפה הרפואית המאוחדת | C2350543 |
כל חילוף החומרים המתרחש בתאי הגוף מחייב השתתפות אנזימים מסוגים שונים.
אספקת חומרי גלם לתהליכים המטבוליים נעשית על ידי קליטת חומרים מהסביבה החיצונית. במקרים מסוימים נעשה שימוש במאגרי מזון הנמצאים בתא עצמו.
קטבוליזם (Catabolism): מושג זה מתייחס למכלול בתהליכים אנזימטיים המפרקים את החומרים שנקלטו מהסביבה למולקולות קטנות יותר, תוך כדי שחרור האנרגיה האצורה בהם.
ביצורים מפותחים, חלק מפרוק המולקולות הגדולות למולקולות קטנות יותר מתבצע במערכת העכול, ורק כך הן יכולות לעבור את קרום התא ולהיכנס לתוך התא עצמו. גם תהליכים אלה מחייבים השתתפות אנזימים.
פירוק תוך תאי של תרכובות אורגניות רבות משמש להפקת אנרגיה. האנרגיה אצורה בקשרים הכימיים שבין אטומי המולקולות, וניתוק קשרים אלו מאפשר את הפקת האנרגיה הדרושה לתא על-מנת להתקיים. לרוב, האנרגיה המופקת נאגרת בתוך מולקולות ATP.
אנאבוליזם (Anabolism, או ביוסינתזה; בעברית: הַבְנָיָה): זהו מושג המתייחס לסינתזה של תרכובות בעלות מולקולות מורכבות. המולקולות הקטנות שהתקבלו בתהליך הקטבוליזם משמשות כחומר גלם לבנית המולקולות הגדולות, הדרושות לבניין התא ולתפקודו. תהליך זה דורש שימוש באנרגיה. תהליך ההבניה שונה בתאים של רקמות שונות, בהתאם לצורכי הרקמה.
דוגמה לשילוב של תהליך קטבולי ותהליך אנאבולי ניתן למצוא בגלגול הסוכר. רוב הסוכר שאנו צורכים במזון מגיע בצורת סוכרוז, (סוכר לבן). בגוף הוא מפורק לאבני הבניין שלו - גלוקוז ופרוקטוז. הגלוקוז מגיע לתאי הכבד, שם הוא מהווה את חומר הגלם לבנית גליקוגן, המשמש כחומר תשמורת.
ביצורים חיים מתקיים מעבר של אלקטרונים בין תרכובות שונות, ומעבר זה מאפשר הפקת אנרגיה. לכן, כל תא חי זקוק לתרכובות התורמות (מוסרות) אלקטרונים ולתרכובות המקבלות אלקטרונים. קיים מגוון רב של תרכובות המשמשות את היצורים השונים כתורמות וכמקבלות אלקטרונים. באדם למשל, המזון מספק את התרכובות מוסרות האלקטרונים (ובראשן - גלוקוז), ואילו החמצן אותו אנו נושמים הוא התרכובת שקולטת את האלקטרונים ותוך כדי כך נוצרים מים מטבוליים ופחמן דו-חמצני.
זרימת האלקטרונים בתא החי מאפשרת בנית תרכובת הנקראת ATP. תרכובת זו, בה משתמשים כל היצורים החיים, מכילה קשרים עתירי אנרגיה. כשהתא נזקק לאנרגיה לשם ביצוע תהליכים שונים, מתפרק ה-ATP באמצעות האנזים המתאים. שבירת הקשרים הכימיים שלו מביא לשחרור אנרגיה, שאותה מסוגל התא לנצל. לכן מולקולת ה-ATP מכונה "מטבע האנרגיה של התא". צורת האנרגיה המופקת או נאגרת בתאים של יצורים חיים, היא אנרגיה כימית.
היצורים השונים משתמשים במגוון גדול של תורמי אלקטרונים וקולטי אלקטרונים. קיימות שלוש שיטות כלליות להפקת אנרגיה בתא:
החלוקה שלעיל מתייחסת לתהליכים. היצורים עצמם ממוינים לשלוש קבוצות מטבוליות שונות:
סוג היצור | מקור לאנרגיה | מקור לפחמן | מי ומי |
כמוהטרוטרוף | תגובות חמצון-חיזור | תרכובות אורגניות | כמעט כל היצורים שאינם פוטוסינתטיים; כל בעלי החיים |
כמואוטוטרוף | תגובות חמצון-חיזור | פחמן דו-חמצני | חיידקי גופרית, חיידקי מימן, חיידקי ניטריפיקציה |
פוטואוטוטרוף | אור | פחמן דו-חמצני | צמחים, פרוטיסטים וחיידקים פוטוסינתטיים |
שמה של כל אחת משלוש קבוצות היצורים מסתיימות בסיומת -טרוף (troph-), כשלפניה שתי קידומות:
בשעה שבעלי חיים וצמחים קלים יחסית למיון טקסונומי על-פי מראם ותכונותיהם החיצוניות, הרי שמיונם של מיקרואורגניזמים דורש אמצעים אחרים. סוגים שונים של חיידקים מגלים תכונות חיצוניות זהות, ולכן נדרשים קריטריונים נוספים למיון. המטבוליזם מהווה את אחד הקריטריונים החשובים למיון מיקרואורגניזמים. החלוקה החשובה ביותר מבחינה מטבולית היא לארוביים ואנארוביים. היצורים נחלקים לחמש קבוצות, לפי התייחסותם לחמצן:
להסבר מפורט על חמש הקבוצות ראו: אורגניזם אל-אווירני.
בנוסף, חיידקים מתמיינים לעיתים לקבוצות שונות לפי יכולתם לפרק תרכובות (לקטוז, למשל). בדיקת יכולתם של חיידקים לפרק תרכובות מאפשרת לעיתים זיהויים ללא שימוש במיקרוסקופ; פירוק של חומרים רבים גורם לשינוי בצבעם, לשינוי בצבעו של אינדיקטור שאותו יש להוסיף (זאת עקב שינוי ברמת החומציות, בדרך כלל), או להופעת תוצרים שאותם ניתן לראות: בועות של גז, טיפות מים, וכדומה.
פעילות מטבולית היא סך התהליכים של קליטה, פירוק, בנייה ושינוי, שעוברים חומרים בגופו של יצור חי כדי לאפשר את קיומו ופעילותו.[1]
מטבוליזם (חילוף חומרים) כולל פירוק של חומרים אורגאניים מורכבים תוך כדי הפקת אנרגיה (קטבוליזם), ובנייה של חומרים מורכבים שיוצרים את הרקמות והאיברים מחומרים פשוטים תוך כדי השקעת אנרגיה (תהליך אנאבולי) החומרים שמתפרקים בתהליך הפירוק כוללים חומרי מזון (פחמימות, חלבונים, שומנים) ומוצרי אחסון של הגוף (לדוגמה, גליקוגן). תוצרי הלוואי כוללים מים ופחמן דו-חמצני. התהליך האנאבולי כולל בנייה של מולקולות מורכבות, כגון חלבונים ושומנים, ממולקולות פשוטות יותר.[2]
מטבוליזם של מזון מספק לגוף חומרי בנייה ומקור להפקת אנרגיה. האנרגיה שניתן להפיק מהמזונות השונים נמדדת ביחידות של קלוריה. ישנם 3 רכיבי תזונה שהם בעלי ערך קלורי: הפחמימות, השומנים והחלבונים. מים, ויטמינים ומינרלים הם חסרי ערך קלורי. מטבוליזם של נשימה הוא תהליך קליטת חמצן ושימוש בו בתהליכי הפקת אנרגיה. ניתן לדבר גם על מטבוליזם של מולקולות ספציפיות בגוף לדוגמה מטבוליזם של אלכוהול.[3]
מרבית חילוף החומרים בגוף (כ-70%) משמש למטבוליזם הבסיסי (Basal Metabolic Rate), כלומר לפעילויות של הגוף במנוחה מוחלטת. מטבוליזם זה משמש לפעילויות הבסיסיות כמו נשימה, דופק לב, שמירת חום גוף קבוע, הפעלת מחזור דם, קיום מתח שרירים ופעילויות בלתי רצוניות אחרות. כל פעילות נוספת (כמו דיבור, אכילה, הליכה, ריצה) גורמת לעליה ברמת המטבוליזם ועלייה בצריכת האנרגיה. גורמים נוספים דוגמת גודל גוף וטמפרטורה משפיעים על רמת המטבוליזם.[1]
תהליכים מטבוליים בגוף תלויים בפעילותם התקינה של אנזימים שמשתתפים בהם. פגיעה באנזים מסוים עשויה להביא למחלה מטבולית. סוכרת הינה דוגמה למחלה מטבולית בה נפגע יצור האינסולין או התגובה אליו. האינסולין אחראי על שמירה של רמת גלוקוז קבועה בדם וכשפעילותו נפגעת רמת הגלוקוז בדם עולה יתר על המידה.[4]
בתא קיימים מסלולים מוגדרים המשמשים לפירוק או ייצור תרכובות. הגליקוליזה, למשל, היא מסלול מטבולי המצוי ברוב היצורים החיים. מסלולים אחרים, כגון זרחון חמצוני, ייחודיים ליצורים מסוימים. התהליכים מוגדרים כ"מסלולים" כיוון שכמעט תמיד לא מדובר בפירוק ובנייה פשוטים, אלא בשרשרת ארוכה של תגובות כימיות המביאה בסופו של דבר לתוצר. בגליקוליזה, למשל, עובר הגלוקוז, החומר הראשוני בתהליך, עשר תגובות כימיות עד שהוא מומר לתוצר הסופי: פירובט. על כל תגובה אחראי אנזים נפרד.
קיימים מסלולים מטבוליים מנוגדים: המסלול המנוגד לגליקוליזה, למשל, בה מיוצר פירובט מגלוקוז, הוא גלוקונאוגנזה, בה מיוצר גלוקוז מפירובט. במהלך האבולוציה התפתחו כמה מנגנונים המונעים מהמסלולים המנוגדים לעמוד האחד בדרכו של השני:
תרופות רבות, המשמשות לחיסול חיידקים פתוגניים, מבוססות על פגיעה במסלול מטבולי כלשהו בתא החיידק. להבדיל, רעלים רבים (ובכללם כלי נשק כימיים) פועלים באמצעות פגיעה במסלולים מטבוליים בבעלי חיים ובאדם. רעלים רבים, דוגמת המימן הציאנידי, פוגעים בתהליך הנשימה התאית (וספציפית: בזרחון החמצוני), דבר הגורם למוות מהיר עקב הפסקת יצור האנרגיה בגוף.
בתא מועברים האלקטרונים באמצעות נשאי אלקטרונים, מולקולות ייעודיות המשמשות בדרך כלל כקואנזימים (מולקולות עצמאיות המקושרות לאנזימים ואשר מהוות את האתר הפעיל של האנזים). שני נשאי אלקטרונים אוניברסליים, המשתתפים ברבות מהתגובות בתאיהם של יצורים חיים, הם NAD ו-FAD. שני חומרים אלו הם נוקלאוטידים; הראשון הוא נגזרת של ויטמין B3 (ניאצין) והשני - של ויטמין B2 (ריבופלאווין). מחסור בוויטמינים אלו גורם לבעיות מטבוליות חמורות. לשני הנוקלאוטידים נטייה לקלוט יון הידריד (-H); זהו יון שלילי של מימן אשר מורכב מפרוטון ומשני אלקטרונים. כשגלוקוז, למשל, מתפרק בתהליך הגליקוליזה, משתחררים ממנו יוני הידריד, אותם קולט NAD (והופך ל-NADH); הנשא מעביר את האלקטרונים לחמצן בשלב הזרחון החמצוני, השלב האחרון של הנשימה התאית, והופך שוב ל-NAD, אשר מסוגל להשתתף שוב בגליקוליזה.
בתא נשמר מאגר קבוע למדי של נשאי אלקטרונים, אשר מתחמצנים ומתחזרים לסירוגין. אם NADH לא מסוגל לתרום את האלקטרונים שלו מסיבה כלשהי, מידלדל מאגר ה-NAD בתא ותהליך הגליקוליזה אינו מתאפשר. התסיסה מהווה הפתרון לתאים המתקיימים בסביבה ללא חמצן. במקום למסור את האלקטרונים לקולט אלקטרונים חיצוני (חמצן, למשל) נמסרים האלקטרונים לפירובט, תוצר הגליקוליזה. פירובט מומר לתוצר סופי כלשהו (אפשרויות רבות: אתנול, חומצה אצטית, חומצה לקטית ועוד) ואילו NADH ממוחזר ל-NAD, אשר משתתף שוב בגליקוליזה.
תופעה זו מתרחשת גם בתאי שריר של בעלי חיים אארוביים, ובהם האדם. כשהשריר מתאמץ ולא די בחמצן המגיע אליו דרך מחזור הדם לשם ביצוע נשימה אארובית, התאים מבצעים נשימה אנארובית (תסיסה), שתוצרה הסופי הוא חומצה לקטית. החומצה מצטברת וגורמת לכאבי שרירים. מחומצה לקטית עדיין ניתן להפיק אנרגיה רבה, וזה קורה כאשר השריר נח, חמצן מגיע דרך מחזור הדם והחומצה הלקטית תתפרק והאלקטרונים יעברו עד החמצן. בתהליך זה נעלמת החומצה הלקטית מהשריר ונעלמים גם הכאבים שהיא גרמה. מיקרואורגניזמים רבים הסתגלו לחיים ללא חמצן באמצעות פיתוח מסלולי תסיסה. ביצורים אנארוביים אובליגטוריים (ראו לעיל) לא קיים כלל מנגנון זרחון חמצוני, כך ש-NADH מוכרח למסור את האלקטרונים שלו לפירובט בתסיסה. ביצורים פקולטטיביים, בדומה לתאי השריר באדם, קיים מנגנון זרחון חמצוני; בתנאים של מחסור בחמצן מבצעים יצורים אלו תסיסה במקום נשימה תאית.
בתהליך הזרחון החמצוני עצמו משתתפים נשאי אלקטרונים רבים, המהווים שרשרת העברת אלקטרונים. נשאי האלקטרונים בתהליך זה הם חלבונים גדולים המכילים בדרך כלל אטומי מתכת ואשר קבועים בתוך ממברנת המיטוכונדריון, בו מתרחש הזרחון החמצוני. ביצורים פרוקריוטיים נשאי האלקטרונים נמצאים בממברנת התא. לכל נשא אלקטרונים נטייה שונה לקבל ולתרום אלקטרונים. ביצורים אארוביים, האלקטרונים עוברים דרך השרשרת עד להגיעם לקולט האלקטרונים הסופי - חמצן. החמצן קולט אלקטרונים ופרוטונים והופך למים מטבוליים.
מחלות רבות נובעות מבעיה מטבולית. הללו מתחלקות לשני סוגים:
ראו גם: רשימת הפרעות מטבוליות.
המושג חילוף חומרים בסיסי מתייחס לגוף השלם,[6] בהיבט של צורכי האנרגיה הבסיסיים של כל רקמות הגוף ולפעילויות של הגוף במנוחה מוחלטת. הכוונה לפעילויות הבסיסיות כמו נשימה, פעילות לב, שמירת חום גוף קבוע (ביצורים הומיאוטרמיים), קיום מתח שרירים מינימלי ופעילויות נוספות.
לספורטאים בדרך כלל יש חילוף חומרים בסיסי גבוה. דרישות האנרגיה בגופם גבוהות, בשל הפעילות הפיזית האינטנסיבית אותה הם מבצעים. כתוצאה מהאימונים, הגוף מתאים את עצמו לדרישות. תאי רקמות השריר מקבלים אספקת חמצן מוגברת ומפיקים כמויות גבוהות יותר של אנרגיה.
ידוע על שימוש לא חוקי בחומרים מאיצי מטבוליזם (כגון T3, אפדרין, סטרואידים ועוד) בניסיון להגיע להשגים משופרים בתחרויות. מעבר להיות השימוש בהם בלתי חוקי, הוא גם עלול לפגוע בבריאות המשתמשים.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.