Loading AI tools
ביטוי מספרי למידת הסבירות שמאורע יתרחש מוויקיפדיה, האנציקלופדיה החופשית
הסתברות היא מספר ממשי המציין את מידת הסבירות שמאורע מסוים יתרחש. ההסתברות של מאורע יכולה לקבל ערך מספרי שבין 0 (כלל לא סביר / בלתי אפשרי) ל־1 (מאורע ודאי או כמעט ודאי). הסתברות היא מושג יסודי במתמטיקה ומוגדרת באופן אנליטי בתורת ההסתברות. שימוש מעשי נרחב במושג ההסתברות נעשה בתחומי הסטטיסטיקה, מדעי הטבע, מדעי המחשב, מדעי החברה ומדעים אחרים.
חוסר הוודאות של מאורע, ולכן הצורך בחישוב או הערכה של ההסתברות שלו, עשויים לנבוע משני גורמים:
שאלה פתוחה היא האם כל הסתברות מהסוג הראשון היא למעשה הסתברות מהסוג השני, כלומר האם האקראיות שבהתפרקות אטומים רדיואקטיביים נובעת רק מחוסר ידיעה שלנו על כל הכוחות הפועלים, או שאקראיות היא חלק בלתי נפרד מהטבע, בפרט במסגרתה של מכניקת הקוונטים.
כאשר אנו מטילים מטבע, קל לומר באופן אינטואיטיבי שההסתברות שהוא ייפול על "עץ" היא 50%. בקביעה זו חסרה עדיין הגדרה פורמלית של המושג הסתברות. כאשר אנו מטילים מטבע 10 פעמים, נוכל לצפות שב־5 מקרים יֵצא "עץ" וב־5 מקרים יֵצא "פלי", אך ברור שאין כל ודאות בכך – ייתכן שבכל 10 ההטלות התוצאה תצא "עץ". מהי, אם כן, המשמעות של "הסתברות של 50%" בהקשר זה? התשובה של תורת ההסתברות לשאלה זו היא שההסתברות משקפת את השכיחות היחסית במספר גדל והולך של ניסיונות.
שאלות של הסתברות עולות בהקשרים שונים:
בניתוחן של שאלות העוסקות בהסתברות עוסקת תורת ההסתברות.
בלשון הדיבור, מידת ההסתברות של מאורע היא הסיכוי שהמאורע יתרחש. באופן פורמלי, מרחב הסתברות הוא שלשה המורכבת מ
הגדרה מדויקת של מושגים אלו מתקבלת על ידי ניסוח מסודר של אקסיומות ההסתברות.
דוגמה: אם המטבע שקול (אינו מזויף, כלומר עגול לחלוטין, בעל עובי אחיד בדיוק וצפיפות המסה שלו שווה בכל חלקיו), ומוטל באופן שאין דרך לדעת מראש אם תוצאת הטלתו תהיה "עץ" או "פלי", ההנחה המקובלת היא שקיימת הסתברות שווה לכל אחת משתי התוצאות האפשריות (התוצאה שהמטבע ייפול ויעמוד על קצהו אינה מובאת בחשבון). ניתן לנבא כי במספר גדול של הטלות, מחציתן (בקירוב) יקבלו את הערך "עץ" ומחציתן (בקירוב) – את הערך "פלי". ככל שיגדל מספר ההטלות, כן תשאף התפלגותן ליחס 50:50.
במהלך המאה ה־17, ובמהלך השנים בכלל, נערכו ניסויים רבים ובהם בדקו את ההסתברות בהטלת מטבע. במהלך הניסויים הטילו מטבע מאות אלפי פעמים, ונוכחו לגלות שבכל פעם התפלגות התוצאות הייתה קרובה ליחס 50:50 ובדרך כלל, ככל שגדל מספר הניסויים – כן התקרבו התוצאות ליחס זה. בעקבות ניסויים אלה התפתחה תורת ההסתברות.
בהתאם להגדרה זו של הסתברות, כאשר למרחב המדגם עוצמה אינסופית, אם ההתפלגות אחידה יתרחש בוודאות מאורע שהוא בעל הסתברות 0 (בבחירה אקראית של מספר מתוך קטע, ההסתברות לכל מספר ספציפי היא 0; אולם בוודאות ייבחר מספר כלשהו). בניסויים כאלה בוודאות לא יתרחש מאורע בעל הסתברות 1 (המאורע המשלים למאורע בעל הסתברות 0 שיתרחש). כאשר מרחב המדגם סופי, הסתברות 0 פירושה מאורע בלתי אפשרי, והסתברות 1 פירושה מאורע ודאי.
דרך נוספת לבטא את הסבירות שמאורע מסוים יתרחש, הנפוצה בעיקר בהקשרי הימורים, היא בשימוש ביחסי הסתברויות. באופן אינטואיטיבי, יחס הסתברויות (לפעמים נקרא גם כן סיכוי; באנגלית: odds) הוא הערכה למספר הפעמים שהמאורע צפוי להתרחש לעומת מספר הפעמים שהאירוע צפוי שלא להתרחש. לדוגמה, במרוץ סוסים, מנהל ההימור מעריך את הסיכוי שאחד הסוסים ינצח. אם, למשל, הוא צריך שאם המירוץ יתרחש מספר רב של פעמים, הסוס ינצח פעמיים על כל 3 פעמים שהוא יפסיד, אומרים שיחס הסיכוי שלו לנצח הוא 2:3 (במילים: שתיים לשלוש). לעיתים, מתייחסים ליחס כאל שבר: בדוגמה לעיל, יחס ההסתברויות יכול להיות מוצג כ־2⁄3 (על אף שההסתברות במקרה כזה היא 2/5).
באופן כללי, אם נתונה ההסתברות p להתרחשותו של מאורע כלשהו, ונניח כי p<1 ממש, אז יחס ההסתברויות o לאותו מאורע מתקבל בנוסחה:
ובכיוון ההפוך:
מהגדרה זו נובע שיחס ההסתברויות הוא פונקציה: ממרחב המדגם לקטע . להלן מספר דוגמאות:
ההסתברות | יחס הסתברויות | יחס ההסתברויות כמספר רציונלי |
---|---|---|
0 | 0:1 | 0 |
1 | 1:0 | |
0.5 | 1:1 | 1 |
13 | 1:2 | 12 |
אם p קטן מאוד, ההסתברות ויחס ההסתברויות שואפים לאותו מספר (). למשל, אם p=1⁄100, אז o=1⁄99 (הבדל של אחוז אחד), ואם p=1⁄1000, אז o=1⁄999 (ההבדל של 0.1 אחוז).
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.