aplicación entre dous espazos vectoriais From Wikipedia, the free encyclopedia
En matemáticas unha aplicación linear é unha aplicación entre dous espazos vectoriais, que preserva as operacións de adición de vectores e multiplicación por un escalar.
En álxebra abstracta e en álxebra linear unha aplicación linear é un homomorfismo entre espazos vectoriais ou na linguaxe da teoría de categorías un morfismo sobre a categoría dos espazos vectoriais sobre un corpo dado.
Denomínase aplicación linear, función linear ou transformación linear á aplicación en que os seus dominio e codominio sexan espazos vectoriais que cumpra a seguinte definición:
Sexan e espazos vectoriais sobre (onde representa o corpo), satisfaise que: Se é linear, defínese o núcleo (ker) e a imaxe (Im) de como:
É dicir, que o núcleo dunha transformación linear está formado polo conxunto de todos os vectores do dominio que teñen por imaxe o vector nulo do codominio.
O núcleo de toda transformación linear é un subespazo vectorial do dominio:
Denomínase nulidade á dimensión do núcleo.
A imaxe dunha transformación linear está formada polo conxunto de todos os vectores do codominio que son imaxe de polo menos algún vector do dominio.
Se f1:→ e f2:→ son lineares, entón tamén o é a súa suma f1+f2 (definida como (f1+f2)(x)=f1(x)+f2(x)).
Se f :→ é linear e a é un elemento do corpo K, entón a función af, definida como (af)(x) = a(f(x)), tamén é linear.
Grazas a estas dúas propiedades, e a que a función que envía todo ao elemento nulo é unha aplicación linear, é que o conxunto de transformacións lineares f:→ forma un subespazo das funcións de en W. A este subespazo denótase L(,) ou Hom(,). A dimensión de L(,) é igual ao produto das dimensións de e .
Se f:→ e g:→ son lineares entón a súa composición g∘f:→ tamén o é.
Dado un espazo vectorial , o espazo vectorial L(,), que adoita denotarse End(), forma unha álxebra asociativa sobre o corpo base, onde a multiplicación é a composición e a unidade é a transformación identidade.
Se f:→ é unha transformación linear bixectiva, entón a súa inversa tamén é transformación linear.
Como corolario básico deste teorema, obtense que unha transformación linear dun espazo vectorial de dimensión finita nel mesmo é un isomorfismo se e só se é un epimorfismo se e só se é un monomorfismo.
Se e teñen dimensión finita e se teñen escollidas bases en cada un dos espazos, entón toda transformación linear de en pode representarse por unha matriz. Reciprocamente, toda matriz representa unha transformación linear.
Sexan :→ unha transformación linear, B={v1, ..., vn} unha base de , C={w1, ..., wm} base de . Para calcular a matriz asociada a bas bases B e C cómpre calcular (vi) para cada i=1,...,n e escribilo como combinación linear da base C: (v1)=a11w1+ ...+am1 wm, ..., (vn)=a1nw1+ ...+amn wm.
A matriz asociada denótase C[T]B e é:
Como un vector de se escribe de forma única como combinación linear de elementos de C, a matriz é única.
Como dada calquera escolla de u1, ..., un existe e é única a transformación linear que envía vi en ui, entón, dada A calquera matriz m×n, existe e é única a transformación linear :→ tal que C [T] B=A.
Ademais, as matrices asociadas cumpren que C [aT+bS] B = a C [T] B + b C [S] B para calquera a,b∈ℝ, T,S∈ L(V,W). Por isto, a aplicación que fai corresponder cada transformación linear coa súa matriz asociada é un isomorfismo entre L(,) e Mn×mC (K).
De restrinxirse ao caso =, C=B, tense ademais que esta aplicación é un isomorfismo entre álxebras.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.