Un anticorpo de dominio simple, (abreviado sdAb, do inglés single-domain antibody), tamén chamado polo seu desenvolvedor Ablynx co nome Nanobody (nanocorpo),[1] é un fragmento de anticorpo que consta dun só dominio de anticorpo variable monomérico. Igual que os anticorpos completos, poden unirse selectivamente a un antíxeno específico. Teñen un peso molecular de só 12–15 kDa, polo que son moito máis pequenos que os anticorpos comúns (que pesan 150–160 kDa), e están compostos por dúas cadeas pesadas de inmunoglobulinas e dúas cadeas lixeiras, e incluso son máis pequenos que os fragmentos Fab (~50 kDa, unha cadea lixeira e media cadea pesada) e que os fragmentos variables de cadea simple (~25 kDa, dous dominios variables, un da cadea lixeira e outro da variable).[2]

Thumb
Diagrama de fitas dun dominio VHH de llama.
O bucle CDR3 estendido está coloreado de laranxa.

Os anticorpos de dominio simple foron producidos por enxeñaría a partir de anticorpos de cadea pesada encontrados en camélidos; estes anticorpos de dominio simple denomínanse fragmentos VHH. Os peixes cartilaxinosos tamén teñen anticorpos de cadea pesada (os IgNAR, inmunoglobulinas con novo receptor de antíxeno), a partir dos cales poden obterse anticorpos de cadea simple chamados fragmentos VNAR. Unha estratexia alternativa é dividir os dominios variables diméricos de inmunoglobulina G (IgG) común de humanos e ratos formando monómeros. Aínda que a maioría das investigacións en anticorpos de dominio simple están actualmente baseadas nos dominios variables de cadea pesada, tamén se observou que os nanocorpos derivados de cadeas lixeiras se unen especificamente aos epítopos diana.[3]

Os anticorpos de dominio simple de camélidos son tan específicos coma os anticorpos comúns e nalgúns casos son máis robustos. Ademais, son doadamente illables usando o mesmo procedemento de cribado de fagos (phage panning) utilizado para os anticorpos tradicionais, que permite cultivalos in vitro en grandes concentracións. O tamaño menor e o seu único dominio fan que estes anticorpos sexan máis fáciles de transformar en células bacterianas para a súa produción en masa, polo que son ideais para propósitos de investigación.[4]

Os anticorpos de cadea simple están sendo investigados para utilizalos en múltiples aplicacións farmacéuticas e teñen un uso potencial no tratamento da síndrome coronaria aguda, cancro e enfermidade de Alzheimer.[5][6]

Propiedades

Un anticorpo de dominio simple é unha cadea peptídica duns 110 aminoácidos de longo, que consta dun dominio variable (VH) de cadea pesada de anticorpo, ou dunha IgG común. Estes péptidos teñen unha afinidade similar a antíxenos que a dos anticorpos completos, pero son máis resistentes á calor e estables ante os deterxentes e altas concentracións de urea. Os que derivan de anticorpos de camélidos e peixes son menos lipófilos e máis hidrosolubles, debido ás súas rexións determinantes de complementariedade 3 (CDR3), que forman un bucle estendido (coloreado en laranxa no diagrama de fitas de arriba) que cobre o sitio lipófilo que normalmente se une a unha cadea lixeira.[7][8] Nun estudo feito en 1999, a diferenza dos anticorpos comúns, dous de cada seis anticorpos de dominio simple sobreviviron á temperatura de 90 °C sen perderen a súa capacidade de unirse a antíxenos.[9] A estabilidade ante o ácido gástrico e as proteases depende da súa secuencia de aminoácidos. Algunhas especies están activas no intestino despois da aplicación oral,[10][11] pero a súa baixa absorción no intestino impide o desenvolvemento de anticorpos de dominio simple administrados oralmente e sistemicamente activos.

A masa molecular comparativamente baixa fai que teñan unha mellor permeabilidade nos tecidos, e unha curta vida media no plasma, xa que son eliminados nos riles.[2] A diferenza dos anticorpos completos, non orixinan citotoxicidade desencadeada polo sistema do complemento porque carecen de rexión Fc. Os sdAbs derivados de camélidos e peixes poden unirse a antíxenos ocultos que non son accesibles para os anticorpos completos, por exemplo os sitios activos de encimas. Esta propiedade depende do seu bucle CDR3 estendido, que pode penetrar neses sitios.[8][12]

Produción

Thumb
Un anticorpo de cadea pesada de tiburón (esquerda) e camélido (medio) en comparación cun anticorpo común (dereita). As cadeas pesadas móstranse con ton máis escuro, a cadea lixeira cun ton máis claro. VH e VL son os dominios variables.

A partir de anticorpos de cadea pesada

Un anticorpo de dominio simple pode obterse por inmunización de dromedarios, camelos, llamas, alpacas ou tiburóns co antíxeno desexado e posterior illamento do ARNm que codifica os anticorpos de cadea pesada. Por medio de transcrición inversa e reacción en cadea da polimerase, pode xerarse unha biblioteca de anticorpos de dominio simple que conteña varios millóns de clons. As técnicas de exame como o phage display e ribosome display axudan a identificar os clons que se unen ao antíxeno.[13]

Un método diferente usa bibliotecas de xenes procedentes de animais que non foron previamente inmunizados. Tales bibliotecas conteñen xeralmente só anticorpos con baixa afinidade polo antíxeno desexado, o que fai innecesario aplicar a maduración de afinidade por mutaxénese aleatoria como paso adicional.[14]

Cando se identifican os clons máis potentes, a súa secuencia de ADN é optimizada, por exemplo para mellorar a súa estabilidade ante os encimas. Outro obxectivo é a humanización para impedir as reaccións inmunolóxicas do organismo humano contra o anticorpo. A humanización non é problemática debido á homoloxía entre os fragmentos VHH de camélidos e humanos.[14] O paso final é a tradución do anticorpo de dominio simple optimizado en E. coli, Saccharomyces cerevisiae ou outros organismos axeitados.

A partir de anticorpos convencionais

Alternativamente, os anticorpos de dominio simple poden producirse a partir de IgG comúns murinas ou humanas de catro cadeas.[15] O proceso é similar, e comprende a creación de bibliotecas de xenes a partir de doantes inmunizados ou virxes e técnicas de display para a identificación dos antíxenos máis específricos. Un problema con esta estratexia é que a rexión de unión das IgG comúns consta de dous dominios (VH e VL), que tenden a dimerizarse ou agregarse debido á súa lipofilia. A monomerización realízase xeralmente substituíndo aminoácidos lipófilos por hidrófilos, pero con frecuencia isto ten como resultado a perda de afinidade do antíxeno.[16] Se se pode reter a afinidade, os anticorpos de dominio simple poden igualmente producirse en E. coli, S. cerevisiae ou outros organismos.

A partir de anticorpos de dominio simple humanos formados por enxeñaría

Os dominios VH simples humanos poden illarse a partir de bibliotecas de dominios de anticorpos producidas por enxeñaría por phage display. Os anticorpos de dominio simple humanos que se une a mesotelina[17], GPC2[18] e GPC3[19][20] foron desenvolvidos e comprobados nos formatos de inmunotoxinas e células T de receptor de antíxeno quimérico (CAR).

Aplicacións potenciais

Os anticorpos de dominio simple teñen unha ampla gama de aplicacións en biotecnoloxía e terapéuticas debido ao seu pequeno tamaño, produción simple e alta afinidade.[21]

Biotecnolóxicas e diagnósticas

A fusión dunha proteína fluorescente a un nanocorpo xera o denominado cromocorpo. Os cromocorpos poden utilizarse para recoñecer e trazar dianas en diferentes compartimentos de células vivas. Poden, por tanto, incrementarse as posibilidades da microscopia de células vivas e de facer novos estudos funcionais.[22] O acoplamento dun nanocorpo anti-GFP a unha matriz monovalente, chamado nanotrampa-GFP, permite o illamento de proteínas de fusión-GFP e as moléculas que interaccionan con ela para ulteriores análises bioquímicas.[23] A localización dunha soa molécula con técnicas de imaxe de super-resolución require a entrega específica de fluoróforos en estreita proximidade a unha proteína diana. Debido aos seus grandes tamaños, o uso de anticorpos normais acoplados a tinguiduras orgánicas poden a miúdo orixinar un sinal confuso debido á distancia entre o fluoróforo e a proteína diana. A fusión de tinguiduras orgánicas a nanocorpos anti-GFP que teñen como diana proteínas etiquetadas con GFP permite conseguir unha resolución espacial nanométrica e un erro mínimo de ligamento debido ao pequeno tamaño e alta afinidade.[24] Para incrementar a probabilidade de cristalización dunha molécula diana, os nanocorpos poden ser utilizados como chaperonas de cristalización. Como proteínas auxiliares, poden reducir a heteroxeneidade conformacional ao unirse e estabilizarse nun subconxunto de determinados estados conformacionais. Tamén poden enmascarar superficies interferindo coa cristalización cando as rexións estendidas que forman o cristal toman contacto.[25]

En aplicacións de biosensores para o diagnóstico os nanocorpos poden utilizarse prospectivamente como ferramenta. Dado o seu pequeno tamaño, poden ser acoplados máis densamente na superficie do biosensor. Ademais das súas vantaxes para unirse a epítopos menos accesibles, a súa estabilidade conformacional tamén causa unha maior resistencia ás condicións de rexeneración de superficies. Despois de inmobilizar os anticorpos de dominio simple sobre as superficies sensoras que detectan o antíxeno prostático específico humano (hPSA), a presenza deste pode ser comprobada. Os nanocorpos son superiores aos anticorpos clásicos na detección de concentracións clinicamente significativas de hPSA.[26]

Terapéuticas

Os anticorpos de dominio simple foron probados como unha posible nova ferramenta terapéutica contra múltiples dianas. En ratos infectados polo virus da gripe A subtipo H5N1, os nanocorpos dirixidos contra a hemaglutinina suprimían a replicación do virus H5N1 in vivo e reducían a morbilidade e mortalidade.[27] Os nanocorpos que se dirixen contra o dominio de unión ao receptor celular dos factores de virulencia toxina A e toxina B de Clostridium difficile neutralizan os efectos citopáticos en fibroblastos in vitro.[28]

Thumb
Nanocorpos para terapia fototérmica. Os nanocorpos, que poden unirse a antíxenos tumorais como HER2 están acoplados a nanoparticulas de ouro ramificadas que absorben a enexía da luz e crean calor para así matar células cancerosas.

Desenvolvéronse anticorpos de cadea simple dispoñibles por vía oral contra E. coli, que inducen diarrea en bacoriños e foron comprobados exitosamente.[11] Outras doenzas do tracto gastrointestinal, como a enfermidade inflamatoria intestinal e o cancro de colon, son tamén posibles dianas para os anticorpos de dominio simple oralmente dispoñibles.[29]

As especies estables aos deterxentes que teñen como diana a proteína de superficie do fungo Malassezia furfur foron producidas por enxeñaría para o seu uso en xampús contra a caspa.[7]

No marco dunha estratexia para a terapia fototérmica os nanocorpos que se unen ao antíxeno HER2, que se sobreexpresan nas células de cancro de mama e de ovario, foron conxugados a nanopartículas de ouro (ver figura). As células tumorais foron destruídas fototermicamente usando un láser no decurso dun experimento.[30]

ALX-0081 é un anticorpo de dominio simple que ten como diana o factor de von Willebrand, que está en ensaios clínicos para a prevención da trombose en pacientes de síndrome coronaria aguda.[31] Un estudo en fase II que examinaba o ALX-0081 en intervencións coronarias percutáneas de alto risco comezou en setembro de 2009.[32]

Ablynx espera que os seus nanocorpos poidan cruzar a barreira hematoencefálica e permear grandes tumores sólidos máis doadamente que os anticorpos completos, o cal permitiría o desenvolvemento de novos fármacos contra os cancros de cerebro.[29]

Notas

Wikiwand in your browser!

Seamless Wikipedia browsing. On steroids.

Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.

Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.