Les voies dopaminergiques, parfois appelées projections dopaminergiques, sont l'ensemble de fibres de projection dans le cerveau qui synthétisent et libèrent le neurotransmetteurdopamine[1],[2]. Les neurones individuels dans ces voies sont appelés neurones dopaminergiques. Les neurones dopaminergiques ont des axones qui parcourent toute la longueur de la voie.
La voie tuberonfundibulaire transmet la dopamine du noyau arqué (noyau infundibulaire) de l'hypothalamus à l'hypophyse par la libération de dopamine dans l'éminence médiane et sa circulation ultérieure par le système porte hypothalamo-hypophysaire. Cette voie influence la sécrétion de certaines hormones par l'hypophyse, notamment la prolactine. le mot Infundibulaire dans le mot tuberoinfundibulaire est relatif à la cupule ou infundibulum, à partir duquel l'hypophyse se développe.
l'activité de cette voie inhibe la libération de prolactine.
Les voies mésocorticale et mésolimbique sont également reconnues sous le nom de projection, système ou voiemésocorticolimbique[2],[12].
La voie dopaminergique qui part de la pars compacta et aire tegmentale ventrale vers le striatum (i.e., la voie nigrostriatale et mesolimbique, respectivement) constitue une partie d'une séquence de voies appelées la boucle cortico-basal ganglia-thalamo-corticale[13],[14]. La composante nigrostriatale de la boucle est formée de la pars compacta, donnant deux voies inhibitrice et excitatrice qui part du striatum vers le globus pallidus, avant de passer vers le thalamus, ou vers le noyau sous-thalamique avant de passer vers le thalamus. Les neurones dopaminergique dans ce circuit augmente l'amplitude de la décharge phasique en réponse à une erreur de récompense positive, c'est-à-dire quand la récompense dépasse celle attendue. L'inverse ne survient pas en cas de prédiction négative de la récompense, laissant supposer que ce sont les neurones sérotoninergique qui sont responsables de l'encodage de la perte de récompense. L'activité phasique de la dopamine augmente également durant des signaux d'événements négatifs, cependant la simulation des neurones dopaminergiques intervient également dans le choix de préférences de place, indiquant son rôle dans l'évaluation des stimuli positifs.
Deux hypothèses peuvent être proposées devant ces découvertes, concernant le rôle des noyaux gris centraux et le circuit nigrostriatal de la dopamine. Un premier modèle suggérant le rôle de «critique» qui encode une valeur, et d'acteur qui encode les réponses aux stimuli en se basant sur une valeur perçue. cependant, le deuxième modèle propose que les actions ne proviennent pas des noyaux gris centraux, mais plutôt du cortex et subissent une sélection au niveau de ces noyaux. Ce modèle propose que la voie directe contrôle les comportements adaptés, tandis que la voie indirecte inhibe ceux qui sont inappropriés pour la situation. Ce modèle propose que la phase tonique de décharge dopaminergique augmente durant l'activité de la voie directe, causant une tendance à l'exécution rapide des actions[15].
Ces modèles des noyaux gris centraux serait impliqués dans l'étude du TDAH, du syndrome de Tourette, de la maladie de Parkinson, de la schizophrénie, du TOC[16],[17], et de la toxicomanie. Par exemple, la maladie de Parkinson serait secondaire à une activité excessive de la voie inhibitrice, ce qui explique les mouvements lents et les déficits cognitifs, tandis que le syndrome de Tourette serait le résultat d'une activité excitatrice excessive ayant pour résultat les tics caractéristiques cette maladie[15].
Les voies mésocorticolimbiques seraient impliquées dans les processus d'apprentissage. Différents modèles ont été proposés, mais le modèle dominant est celui du temporal difference learning, dans lequel une prévision est faite avant une récompense, puis un ajustement est effectué en se basant sur un facteur d'apprentissage et d'un rendement de la récompense par rapport à une attente menant à une courbe d'apprentissage[18].
La voie mésocorticale est principalement impliquée dans la régulation des fonctions exécutives (attention, mémoire de travail, contrôle inhibiteur, planification,etc.), elle est donc particulièrement pertinente pour le TDAH[19],[20].
La voie mésolimbique régule la motivation, l'apprentissage par renforcement et la peur, entre autres processus cognitifs[9],[20],[21]. Elle est impliquée également dans la motivation. L'épuisement de la dopamine au niveau de cette voie ou la présence de lésions sur son site d'origine diminuent les limites de la volonté d'un animal à obtenir une récompense (par exemple, le nombre de pressions du levier pour obtenir la nicotine ou le temps qu'il passe à chercher de la nourriture). L'effet inverse peut être observé à la suite de l'administration des médicaments dopaminergiques, en plus de l'augmentation du taux de déclenchement des neurones dans la voie mésolimbique pendant l'anticipation de la récompense[22]. On pensait autrefois que la libération mésolimbique de la dopamine était le principal médiateur du plaisir, mais actuellement elle ne semble avoir qu'un rôle mineur dans la perception du plaisir[23],[24]. On suppose actuellement l'existence de deux états de l'activité du cortex préfrontal entrainé par l'activité des voies D1 et D2; un état mené par D1 dans lequel se trouve une barrière permettant un niveau élevé de concentration, et un mené par D2 permettant le changement de tâches avec une faible barrière permettant davantage l'entrée d'informations[25],[26].
Une étude de 2024 montre que les neurones de projection striatale (SPN) coexprimant les récepteurs dopaminergiques D1 et D2 modulent la fonction motrice des SPN D1 (activateurs) et D2 (inhibiteurs)[27],[28].
L'aire tegmentale ventrale et la substance noire reçoivent des apports d'autres systèmes de neurotransmetteurs, incluant les entrées glutaminergiques, les entrées GABAergiques, des entrées cholinergiques et des entrées d'autres noyaux monoaminergiques.
La VTA contient des récepteurs 5-HT 1A qui exercent un effet biphasique sur le déclenchement; entraînant une augmentation du taux de déclenchement à faibles doses d'agonistes du récepteur 5-HT 1A, avec action inhibitrice à des doses supérieures. Les récepteurs 5-HT 2A exprimés sur les neurones dopaminergiques augmentent l'activité, tandis que les récepteurs 5-HT 2C induisent une diminution de l'activité[29].
La voie mésolimbique, qui part de la VTA vers le noyau accumbens, est également régulée par les récepteurs muscariniques de l'acétylcholine. En particulier, l'activation des récepteurs muscariniques M2 et M4 qui inhibent la libération de dopamine, tandis que l' activation du récepteur muscarinique M1 augmente la libération de dopamine[30]. Les décharges GABAergiques du striatum diminuent l'activité neuronale dopaminergique, tandis que les décharges glutaminergiques de nombreuses zones corticales et sous-corticales augmentent la cadence de décharge des neurones dopaminergiques. Les endocannabinoïdes semblent également avoir un effet modulateur sur la libération de dopamine par les neurones qui partent de la VTA et de la SNc[31].
Les entrées noradrénergiques provenant du locus cœruleus ont des effets excitateurs et inhibiteurs sur les neurones dopaminergiques qui partent de la VTA et de la SNc[32],[33].
Les entrées excitatrices orexinergiques vers la VTA proviennent de l' hypothalamus latéral et peut intervenir dans la régulation du seuil d'excitabilité du neurone dopaminergique VTA[34],[35].
Davantage d’informations Neurotransmetteur, Origine ...
Entrées vers la zone tegmentale ventrale (VTA) et la pars compacta de la substance noire (SNc)
- Effet excitateur sur les neurones dopaminergiques de l'inhibition des entrées de GABAergic - Effet inhibiteur sur les neurones dopaminergiques par l'inhibition des entrées glutamatergiques - Peut interagir avec les orexines via les hétérodimères des récepteurs CB1 - OX1 pour réguler le déclenchement neuronal
- Effet excitateur sur les neurones dopaminergiques via la signalisation via les récepteurs de l'orexine (OX1 et OX2) - Augmente le déclenchement tonique et phasique des neurones dopaminergiques dans la VTA - Peut interagir avec les endocannabinoïdes via les hétérodimères des récepteurs CB1 - OX1 pour réguler le déclenchement neuronal
Au niveau d'une synapse chimique, les neurotransmetteurs sont normalement libérés depuis la terminaison axonale pré-synaptique et transmettent un signal via des récepteurs situés sur les dendrites du neurone post-synaptique; cependant, dans la neurotransmission rétrograde, les dendrites du neurone post-synaptique libèrent des neurotransmetteurs qui transmettent un signal via les récepteurs situés sur la terminaison axonale du neurone pré-synaptique[34]. Le signal transmit par les endocannabinoïdes suivant ce mode de neurotransmission rétrograde, les neurones dopaminergiques se projetant en dehors de la VTA et de la SNc libèrent des endocannabinoïdes depuis leurs dendrites et ceux-ci agissent sur les terminaisons axonales inhibitrices GABAergiques et excitatrices glutaminergiques, inhibant leur effet sur l'activation de la voie dopaminergique[31],[34].
«Recent studies on intracranial self-administration of neurochemicals (drugs) found that rats learn to self-administer various drugs into the mesolimbic dopamine structures–the posterior ventral tegmental area, medial shell nucleus accumbens and medial olfactory tubercle… In the 1970s it was recognized that the olfactory tubercle contains a striatal component, which is filled with GABAergic medium spiny neurons receiving glutamatergic inputs form cortical regions and dopaminergic inputs from the VTA and projecting to the ventral pallidum just like the nucleus accumbens»
Molecular Neuropharmacology: A Foundation for Clinical Neuroscience, New York, , 2eéd., 147–148, 154–157 (ISBN978-0-07-148127-4), «Chapter 6: Widely Projecting Systems: Monoamines, Acetylcholine, and Orexin».
«Neurons from the SNc densely innervate the dorsal striatum where they play a critical role in the learning and execution of motor programs. Neurons from the VTA innervate the ventral striatum (nucleus accumbens), olfactory bulb, amygdala, hippocampus, orbital and medial prefrontal cortex, and cingulate cortex. VTA DA neurons play a critical role in motivation, reward-related behavior, attention, and multiple forms of memory... Thus, acting in diverse terminal fields, dopamine confers motivational salience (wanting) on the reward itself or associated cues (nucleus accumbens shell region), updates the value placed on different goals in light of this new experience (orbital prefrontal cortex), helps consolidate multiple forms of memory (amygdala and hippocampus), and encodes new motor programs that will facilitate obtaining this reward in the future (nucleus accumbens core region and dorsal striatum)... DA has multiple actions in the prefrontal cortex. It promotes the cognitive control of behavior: the selection and successful monitoring of behavior to facilitate attainment of chosen goals. Aspects of cognitive control in which DA plays a role include working memory, the ability to hold information on line in order to guide actions, suppression of prepotent behaviors that compete with goal-directed actions, and control of attention and thus the ability to overcome distractions... Noradrenergic projections from the LC thus interact with dopaminergic projections from the VTA to regulate cognitive control.»
Molecular Neuropharmacology: A Foundation for Clinical Neuroscience, New York, , 2eéd., 516p. (ISBN978-0-07-148127-4), «Chapter 10: Neural and Neuroendocrine Control of the Internal Milieu», p.249.
«Relationship of the hypothalamus and the pituitary gland. The anterior pituitary, or adenohypophysis, receives rich blood flow from the capillaries of the portal hypophyseal system. This system delivers factors released by hypothalamic neurons into portal capillaries at the median eminence. The figure shows one such projection, from the tuberal (arcuate) nuclei via the tuberoinfundibular tract to the median eminence.»
«Potential substrates for nicotine and alcohol interactions: a focus on the mesocorticolimbic dopamine system», Biochem. Pharmacol., vol.86, no8, , p.1181–93 (PMID23876345, PMCID3800178, DOI10.1016/j.bcp.2013.07.007).
(en) Taylor SB, Lewis CR, Olive MF, «The neurocircuitry of illicit psychostimulant addiction: acute and chronic effects in humans», Subst Abuse Rehabil, vol.4, , p.29–43 (PMID24648786, PMCID3931688, DOI10.2147/SAR.S39684):
«Regions of the basal ganglia, which include the dorsal and ventral striatum, internal and external segments of the globus pallidus, subthalamic nucleus, and dopaminergic cell bodies in the substantia nigra, are highly implicated not only in fine motor control but also in PFC function.43 Of these regions, the NAc (described above) and the DS (described below) are most frequently examined with respect to addiction. Thus, only a brief description of the modulatory role of the basal ganglia in addiction-relevant circuits will be mentioned here. The overall output of the basal ganglia is predominantly via the thalamus, which then projects back to the PFC to form cortico-striatal-thalamo-cortical (CSTC) loops. Three CSTC loops are proposed to modulate executive function, action selection, and behavioral inhibition. In the dorsolateral prefrontal circuit, the basal ganglia primarily modulate the identification and selection of goals, including rewards.44 The OFC circuit modulates decision-making and impulsivity, and the anterior cingulate circuit modulates the assessment of consequences.44 These circuits are modulated by dopaminergic inputs from the VTA to ultimately guide behaviors relevant to addiction, including the persistence and narrowing of the behavioral repertoire toward drug seeking, and continued drug use despite negative consequences.»
«[The striatum] receives dopaminergic inputs from the ventral tegmental area (VTA) and the substantia nigra (SNr) and glutamatergic inputs from several areas, including the cortex, hippocampus, amygdala, and thalamus (Swanson, 1982; Phillipson and Griffiths, 1985; Finch, 1996; Groenewegen et al., 1999; Britt et al., 2012). These glutamatergic inputs make contact on the heads of dendritic spines of the striatal GABAergic medium spiny projection neurons (MSNs) whereas dopaminergic inputs synapse onto the spine neck, allowing for an important and complex interaction between these two inputs in modulation of MSN activity... It should also be noted that there is a small population of neurons in the NAc that coexpress both D1 and D2 receptors, though this is largely restricted to the NAc shell (Bertran- Gonzalez et al., 2008).... Neurons in the NAc core and NAc shell subdivisions also differ functionally. The NAc core is involved in the processing of conditioned stimuli whereas the NAc shell is more important in the processing of unconditioned stimuli; Classically, these two striatal MSN populations are thought to have opposing effects on basal ganglia output. Activation of the dMSNs causes a net excitation of the thalamus resulting in a positive cortical feedback loop; thereby acting as a ‘go' signal to initiate behavior. Activation of the iMSNs, however, causes a net inhibition of thalamic activity resulting in a negative cortical feedback loop and therefore serves as a ‘brake' to inhibit behavior... there is also mounting evidence that iMSNs play a role in motivation and addiction (Lobo and Nestler, 2011; Grueter et al., 2013). For example, optogenetic activation of NAc core and shell iMSNs suppressed the development of a cocaine CPP whereas selective ablation of NAc core and shell iMSNs... enhanced the development and the persistence of an amphetamine CPP (Durieux et al., 2009; Lobo et al., 2010). These findings suggest that iMSNs can bidirectionally modulate drug reward.... Together these data suggest that iMSNs normally act to restrain drug-taking behavior and recruitment of these neurons may in fact be protective against the development of compulsive drug use.»
Beucke, Sepulcre, Talukdar et Linnman, «Abnormally High Degree Connectivity of the Orbitofrontal Cortex in Obsessive-Compulsive Disorder», Jama Psychiatry, vol.70, no6, , p.619–29 (ISSN2168-622X, PMID23740050, DOI10.1001/jamapsychiatry.2013.173).
Molecular Neuropharmacology: A Foundation for Clinical Neuroscience, New York, 2nd, , 313–321p. (ISBN9780071481274), «Chapter 13: Higher Cognitive Function and Behavioral Control»:
«Executive function, the cognitive control of behavior, depends on the prefrontal cortex, which is highly developed in higher primates and especially humans. Working memory is a short-term, capacity-limited cognitive buffer that stores information and permits its manipulation to guide decision-making and behavior... These diverse inputs and back projections to both cortical and subcortical structures put the prefrontal cortex in a position to exert what is often called “top-down” control or cognitive control of behavior.... The prefrontal cortex receives inputs not only from other cortical regions, including association cortex, but also, via the thalamus, inputs from subcortical structures subserving emotion and motivation, such as the amygdala (Chapter 14) and ventral striatum (or nucleus accumbens; Chapter 15).... In conditions in which prepotent responses tend to dominate behavior, such as in drug addiction, where drug cues can elicit drug seeking (Chapter 15), or in attention deficit hyperactivity disorder (ADHD; described below), significant negative consequences can result.... ADHD can be conceptualized as a disorder of executive function; specifically, ADHD is characterized by reduced ability to exert and maintain cognitive control of behavior. Compared with healthy individuals, those with ADHD have diminished ability to suppress inappropriate prepotent responses to stimuli (impaired response inhibition) and diminished ability to inhibit responses to irrelevant stimuli (impaired interference suppression).... Functional neuroimaging in humans demonstrates activation of the prefrontal cortex and caudate nucleus (part of the striatum) in tasks that demand inhibitory control of behavior.... Early results with structural MRI show thinning of the cerebral cortex in ADHD subjects compared with age-matched controls in prefrontal cortex and posterior parietal cortex, areas involved in working memory and attention.»
«To summarize: the emerging realization that many diverse pleasures share overlapping brain substrates; better neuroimaging maps for encoding human pleasure in orbitofrontal cortex; identification of hotspots and separable brain mechanisms for generating liking and wanting for the same reward; identification of larger keyboard patterns of generators for desire and dread within NAc, with multiple modes of function; and the realization that dopamine and most pleasure electrode candidates for brain hedonic generators probably did not cause much pleasure after all.»
Berridge et Kringelbach, «Neuroscience of affect: brain mechanisms of pleasure and displeasure», Current Opinion in Neurobiology, vol.23, no3, , p.294–303 (PMID23375169, PMCID3644539, DOI10.1016/j.conb.2013.01.017).
Durstewitz et Seamans, «The dual-state theory of prefrontal cortex dopamine function with relevance to catechol-o-methyltransferase genotypes and schizophrenia», Biological Psychiatry, vol.64, no9, , p.739–749 (ISSN1873-2402, PMID18620336, DOI10.1016/j.biopsych.2008.05.015).
Seamans et Yang, «The principal features and mechanisms of dopamine modulation in the prefrontal cortex», Progress in Neurobiology, vol.74, no1, , p.1–58 (PMID15381316, DOI10.1016/j.pneurobio.2004.05.006).
(en) edited by Christian P. Müller, Barry Jacobs, Handbook of the behavioral neurobiology of serotonin, Londres, Academic Press, , 1reéd., 262–264p. (ISBN978-0-12-374634-4).
Shin, Adrover, Wess et Alvarez, «Muscarinic regulation of dopamine and glutamate transmission in the nucleus accumbens», Proceedings of the National Academy of Sciences of the United States of America, vol.112, no26, , p.8124–8129 (ISSN0027-8424, PMID26080439, PMCID4491757, DOI10.1073/pnas.1508846112).
«Thus, it is conceivable that low levels of CB1 receptors are located on glutamatergic and GABAergic terminals impinging on DA neurons [127, 214], where they can fine-tune the release of inhibitory and excitatory neurotransmitter and regulate DA neuron firing. Consistently, in vitro electrophysiological experiments from independent laboratories have provided evidence of CB1 receptor localization on glutamatergic and GABAergic axon terminals in the VTA and SNc.»
«New perspectives on catecholaminergic regulation of executive circuits: evidence for independent modulation of prefrontal functions by midbrain dopaminergic and noradrenergic neurons», Front Neural Circuits, vol.8, , p.53 (PMID24904299, PMCID4033238, DOI10.3389/fncir.2014.00053):
«It has been shown that electrical stimulation of LC results in an excitation followed by a brief inhibition of midbrain dopamine (DA) neurons through an α1 receptor dependent mechanism (Grenhoff et al., 1993).»
«Direct CB1-HcrtR1 interaction was first proposed in 2003 (Hilairet et al., 2003). Indeed, a 100-fold increase in the potency of hypocretin-1 to activate the ERK signaling was observed when CB1 and HcrtR1 were co-expressed... In this study, a higher potency of hypocretin-1 to regulate CB1-HcrtR1 heteromer compared with the HcrtR1-HcrtR1 homomer was reported (Ward et al., 2011b). These data provide unambiguous identification of CB1-HcrtR1 heteromerization, which has a substantial functional impact.... The existence of a cross-talk between the hypocretinergic and endocannabinoid systems is strongly supported by their partially overlapping anatomical distribution and common role in several physiological and pathological processes. However, little is known about the mechanisms underlying this interaction.... Acting as a retrograde messenger, endocannabinoids modulate the glutamatergic excitatory and GABAergic inhibitory synaptic inputs into the dopaminergic neurons of the VTA and the glutamate transmission in the NAc. Thus, the activation of CB1 receptors present on axon terminals of GABAergic neurons in the VTA inhibits GABA transmission, removing this inhibitory input on dopaminergic neurons (Riegel and Lupica, 2004). Glutamate synaptic transmission in the VTA and NAc, mainly from neurons of the PFC, is similarly modulated by the activation of CB1 receptors (Melis et al., 2004).»
«Human orexin/hypocretin receptors form constitutive homo- and heteromeric complexes with each other and with human CB1 cannabinoid receptors», Biochem. Biophys. Res. Commun., vol.445, no2, , p.486–90 (PMID24530395, DOI10.1016/j.bbrc.2014.02.026):
«Orexin receptor subtypes readily formed homo- and hetero(di)mers, as suggested by significant BRET signals. CB1 receptors formed homodimers, and they also heterodimerized with both orexin receptors.... In conclusion, orexin receptors have a significant propensity to make homo- and heterodi-/oligomeric complexes. However, it is unclear whether this affects their signaling. As orexin receptors efficiently signal via endocannabinoid production to CB1 receptors, dimerization could be an effective way of forming signal complexes with optimal cannabinoid concentrations available for cannabinoid receptors.»