Loading AI tools
article de synthèse De Wikipédia, l'encyclopédie libre
Les notions de vecteur propre, de valeur propre, et de sous-espace propre s'appliquent à des endomorphismes (ou opérateurs linéaires), c'est-à-dire des applications linéaires d'un espace vectoriel dans lui-même. Elles sont intimement liées, et forment un pilier de la réduction des endomorphismes, partie de l'algèbre linéaire qui vise à décomposer de la manière la plus efficace possible l'espace en somme directe de sous-espaces stables.
Dans toute la suite, on considère un espace vectoriel , sur un corps commutatif . Les éléments de sont les vecteurs et ceux de sont les scalaires. En pratique, le corps est souvent le corps des complexes et l'espace vectoriel est de dimension finie. On précisera dans chaque section, les restrictions éventuelles sur le corps ou la dimension. On notera un endomorphisme de et l'endomorphisme identité.
Définition[1] — Un scalaire est une valeur propre de s'il existe un vecteur non nul tel que .
Les valeurs propres de sont donc les scalaires tels que n'est pas injectif (autrement dit son noyau n'est pas réduit au vecteur nul).
Les valeurs propres d'une matrice carrée de taille sont les valeurs propres de l'endomorphisme de de matrice dans la base canonique.
Si est de dimension finie , les valeurs propres de (ou de sa matrice dans n'importe quelle base) :
Exemples :
Définition[1] — Soit un vecteur non nul de , est un vecteur propre de s'il existe un scalaire tel que . On dit que est un vecteur propre associé à la valeur propre .
Les vecteurs propres (associés à une valeur propre ) d'une matrice carrée de taille sont les vecteurs propres (associés à la valeur propre ) de l'endomorphisme de représenté par .
Définition[1] — Soit une valeur propre de (resp. ) ; alors l'ensemble constitué des vecteurs propres pour la valeur propre et du vecteur nul est appelé le sous-espace propre de (resp. ) associé à la valeur propre .
On suppose ici que est de dimension finie .
On appelle « polynôme caractéristique » de l'endomorphisme , le polynôme , et « polynôme caractéristique » d'une matrice carrée d'ordre , le polynôme caractéristique de l'endomorphisme de canoniquement associé à , c'est-à-dire le polynôme , où est la matrice identité . Ce polynôme est de degré , donc a au plus racines[4].
L'ordre de multiplicité algébrique d'une valeur propre est l'ordre de multiplicité de la racine dans le polynôme caractéristique[7]. C'est donc l'exposant de dans le polynôme caractéristique.
On se place ici dans le cadre d'un espace vectoriel de dimension finie.
On appelle « polynôme minimal » de le polynôme unitaire de plus petit degré qui annule [8]. Le polynôme minimal donne une relation de dépendance linéaire sur les puissances , de l'endomorphisme, et réciproquement une telle relation de dépendance linéaire fournit un polynôme annulateur de , le polynôme minimal en minimisant le degré et en prenant le coefficient 1 pour la plus grande puissance de qui intervient.
On suppose que est de dimension finie et que est algébriquement clos.
Si est une valeur propre de , dont l'ordre de multiplicité est , on appelle « sous-espace caractéristique » de associé à la valeur propre le noyau de . On notera ce sous-espace caractéristique .
On suppose que est de dimension finie. L'étude des valeurs propres permet de trouver une forme plus simple des endomorphismes, c'est ce qu'on appelle leur réduction.
L'endomorphisme est entièrement déterminé par ses vecteurs propres et ses valeurs propres associées s'il est diagonalisable, c'est-à-dire s'il existe une base de vecteurs propres. Des exemples numériques sont donnés dans l'article « Matrice diagonalisable ». Les critères suivants sont tous des conditions nécessaires et suffisantes pour qu'un endomorphisme d'un espace vectoriel de dimension finie soit diagonalisable :
À ces propriétés équivalentes s'ajoutent les implications suivantes :
Dans le cas où le corps est , cette propriété est presque partout vraie au sens de la mesure de Lebesgue. De plus, dans l'espace topologique des endomorphismes de , le sous-ensemble de ceux qui sont diagonalisables est alors dense.
Si le polynôme minimal de est scindé, alors peut s'écrire sous la forme avec diagonalisable et nilpotent tels que . De plus, et sont des polynômes en .
On suppose que est algébriquement clos.
La représentation de Jordan prouve qu'alors, tout endomorphisme de est trigonalisable. Elle démontre que la restriction de au sous-espace caractéristique associé à la valeur propre possède une représentation formée de blocs de la forme
appelés « blocs de Jordan » et que l'endomorphisme possède une représentation matricielle sous la forme
où les scalaires (non nécessairement distincts) sont les valeurs propres de .
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.