De Wikipédia, l'encyclopédie libre
En algèbre linéaire, une matrice carrée A à coefficients dans un corps K est dite trigonalisable (ou triangularisable) sur K si elle est semblable à une matrice triangulaire T à coefficients dans K, via une matrice de passage P elle aussi à coefficients dans K :
Trigonaliser (on dit aussi triangulariser) A sur K consiste à trouver de telles matrices T et P. Cela est possible (on dit alors que A est trigonalisable) si et seulement si le polynôme caractéristique de A est scindé sur K. Par exemple, si A est à coefficients réels, elle est trigonalisable sur ℝ si et seulement si toutes ses valeurs propres (complexes a priori) sont réelles.
Dans la suite, on se donne un entier n > 0 et désignera l'algèbre des matrices carrées d'ordre n à coefficients dans K.
Une matrice triangulaire supérieure est une matrice carrée dont tous les coefficients situés strictement en dessous de la diagonale principale sont nuls, c'est-à-dire une matrice de la forme
De même, une matrice triangulaire inférieure est une matrice carrée dont tous les coefficients situés strictement au-dessus de la diagonale sont nuls.
Il existe plusieurs critères pour savoir si une matrice ou un endomorphisme sont trigonalisables :
Théorème de décomposition de Schur — Toute matrice carrée complexe est trigonalisable dans une base orthonormée.
Seamless Wikipedia browsing. On steroids.