Loading AI tools
théorème mathématique De Wikipédia, l'encyclopédie libre
En analyse, le théorème de représentation de Riesz (certaines versions sont parfois dénommées théorème de Riesz-Markov) est un théorème qui « représente » certains éléments du dual de l'espace des fonctions continues à support compact définies sur un espace topologique localement compact à l'aide de mesures.
Partant d'une mesure de Borel (positive) sur un espace topologique X, on peut l'utiliser pour intégrer toutes les fonctions numériques continues à support compact. L'application ainsi définie sur l'espace vectoriel Cc(X) composé de toutes ces fonctions est une forme linéaire positive (au sens où elle envoie toute fonction à valeurs positives sur un réel positif)[1].
Le théorème de représentation de Riesz établit sous certaines hypothèses la réciproque de cette propriété : on se donne une forme linéaire positive sur Cc(X), et on veut savoir si elle peut être représentée comme intégrale par rapport à une mesure de Borel, et si oui si la mesure est unique.
Il en existe un grand nombre de variantes, et il s'agit plutôt aujourd'hui d'une collection de théorèmes[2] dont quelques énoncés sont présentés ci-dessous. Les hypothèses utiles à la preuve de l'existence sont bien stabilisées d'une source à l'autre (on requiert locale compacité et séparation de X) ; il existe en revanche plusieurs variantes de technicité variable permettant d'écrire des résultats d'unicité.
Dans l'énoncé[3] ci-dessous :
Avec toutes ces conventions de vocabulaire, on peut énoncer :
Plusieurs auteurs soulignent que, lorsque ces deux mesures sont distinctes, la première est la plus utile[4] ; ainsi c'est sur ses propriétés qu'est calquée une définition courante de ce qu'on appelle une mesure de Radon.
Il est possible de construire la mesure de Lebesgue à partir d'une théorie élémentaire d'intégration des fonctions continues en s'appuyant sur ce théorème, plutôt que de s'appuyer sur le volume des parallélépipèdes pour commencer la construction.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.