Remove ads
objet mathématique généralisant la notion de distance De Wikipédia, l'encyclopédie libre
En géométrie, la norme est une extension de la valeur absolue des nombres aux vecteurs. Elle permet de mesurer la longueur commune à toutes les représentations d'un vecteur dans un espace affine, mais définit aussi une distance entre deux vecteurs invariante par translation et compatible avec la multiplication externe.
La norme usuelle dans le plan ou l'espace est dite euclidienne car elle est associée à un produit scalaire, à la base de la géométrie euclidienne.
D'autres normes sont très utilisées sur les espaces vectoriels (de dimension finie ou infinie), appelés alors espaces vectoriels normés. Elles sont notamment très importantes en analyse fonctionnelle pour obtenir des majorations, exprimer la différentiation sur les espaces de fonctions d'une ou plusieurs variables réelles ou complexes, calculer estimations et approximations.
Il existe une deuxième notion de norme, utilisée en arithmétique : elle est traitée dans l'article « Norme (théorie des corps) ».
Si et sont deux points du plan ou de l'espace usuel, la norme du vecteur est la distance c'est-à-dire la longueur du segment . Elle se note à l'aide d'une double barre : .
La norme, la direction et le sens sont les trois données qui caractérisent un vecteur et qui ne dépendent donc pas du choix du représentant.
Dans Unicode, la double barre « ‖ » est le caractère U+2016 (distinct du symbole de parallélisme « ∥ », U+2225).
Soient K un corps commutatif muni d'une valeur absolue et E un K-espace vectoriel.
Une norme sur E est une application sur E à valeurs réelles et satisfaisant les hypothèses suivantes[1] :
Un espace vectoriel muni d'une norme est appelé espace vectoriel normé (parfois abrégé en EVN).
L'image d'un vecteur x par la norme se note usuellement ║x║ et se lit « norme de x ».
La distance d associée à la norme (cf. ci-dessus) munit E d'une structure d'espace métrique, donc d'espace topologique séparé. Un ouvert pour cette topologie est une partie O de E telle que :
Muni de cette topologie, E est un « e.v.t. » (espace vectoriel topologique), c'est-à-dire que :
Proposition — L'addition de E×E dans E et la multiplication externe de K×E dans E sont continues.
Puisqu'une norme sur un espace vectoriel induit sur une topologie d'e.v.t. et même d'espace localement convexe (voir infra) séparé, on peut se demander si la topologie d'un e.v.t. donné peut être induite par une éventuelle norme sur . Lorsque c'est le cas, on dit que l'e.v.t. est normable. Les espaces localement convexes séparés ne sont pas tous normables (par exemple, un espace de Montel de dimension infinie n'est jamais normable).
Cette construction d'une topologie donne toute son importance à la notion de boule ouverte de centre x et de rayon r, c'est-à-dire l'ensemble des points dont la distance à x est strictement inférieure à r. Toute boule ouverte est l'image de la boule unité (ouverte) par la composée d'une translation de vecteur x et d'une homothétie de rapport r.
Les boules ouvertes centrées en un point forment une base de voisinages de ce point ; elles caractérisent donc la topologie. Si E est un espace vectoriel sur ℝ (en particulier si c'est un espace vectoriel sur ℂ), toute boule ouverte est convexe. En effet, comme la convexité est conservée par translation et homothétie, il suffit de montrer cette propriété pour la boule ouverte unité. Si x et y sont deux points de cette boule et si θ est un réel compris entre 0 et 1, alors :
La propriété suivante est donc vérifiée :
Propriété — Un espace vectoriel normé réel est localement convexe.
Ce qui signifie que tout point admet une base de voisinages convexes, par exemple les boules ouvertes centrées en ce point.
Plus la topologie contient d'ouverts, plus précise devient l'analyse associée. Pour cette raison, une topologie contenant au moins tous les ouverts d'une autre est dite plus fine. La question se pose dans le cas de deux normes et sur un même espace vectoriel E, de savoir à quel critère sur les normes correspond une telle comparaison entre leurs topologies associées.
Dans cette section, on note un vecteur de Kn ;
Toutes ces normes sont équivalentes, puisque .
L'inégalité triangulaire pour les normes p s'appelle l'inégalité de Minkowski ; elle est une conséquence de résultats de convexité parmi lesquels l'inégalité de Hölder. Cette dernière, qui généralise la majoration ci-dessus, montre en outre que pour tout vecteur de Kn, l'application décroissante p ↦ ║║p est continue sur [1, +∞]. En effet,
D'autres exemples apparaissent classiquement :
Notons qu'une mise en œuvre « naïve » de la formule sur un ordinateur peut mener à des erreurs de dépassement ou de soupassement pour des valeurs extrêmes (très grandes ou très petites en valeur absolue) : l'étape intermédiaire d'élévation au carré peut mener à des résultats non représentables selon la norme IEEE 754, et donc à un résultat final de 0 ou « infini », alors même que le résultat final est lui-même représentable. Pour éviter ceci, on peut factoriser par : , chaque est compris dans l'intervalle (et au moins l'une des valeurs vaut exactement 1), donc le contenu de la racine est compris dans l'intervalle , ce qui empêche les dépassements et soupassements si le résultat final est représentable. Une autre méthode est celle de Moler et Morrison.
Une norme sur une algèbre est une norme d'algèbre si, en plus d'être une norme d'espace vectoriel, elle est sous-multiplicative (c.-à-d. si )[5].
Dans le cas d'une algèbre réelle ou complexe, la condition est équivalente à la continuité du produit comme application bilinéaire[6].
Si l'algèbre est unitaire, on peut exiger de la norme qu'elle vérifie aussi[7] :
auquel cas la multiplication par une constante ne peut plus être utilisée pour « renormaliser » la norme[réf. nécessaire].
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.