Loading AI tools
page de liste de Wikimedia De Wikipédia, l'encyclopédie libre
En mathématiques, grand nombre n'a pas de sens bien défini[1] : d'une part, l'« ensemble des grands nombres entiers » admettrait un plus petit élément, créant un paradoxe analogue à celui du paradoxe des nombres intéressants ; d'autre part, tout « grand nombre » N est ridiculement petit devant, par exemple, 2N. Ces deux remarques banales ont cependant pu être exploitées pour donner naissance, la première, à celle d'entier non standard, la seconde, à la notion d'entier inaccessible[2].
D'autres exemples sont donnés dans l'article Ordres de grandeur de nombres ; l'article Hiérarchie de croissance rapide donne des moyens de construction de nombres (finis) dépassant toutes les notations précédemment mentionnées. Voir enfin l’article Nombre de Rayo pour une description d’un nombre bien plus grand encore.
En théorie des ensembles on définit des nombres infinis, appelés nombres ordinaux, qui prolongent en l'incluant la suite des entiers naturels. L'idée est qu'un ordinal est l'ensemble de ses prédécesseurs, ainsi le plus petit ordinal infini est l'ensemble des ordinaux finis c'est-à-dire l'ensemble N des entiers naturels. Le processus de construction continue indéfiniment et par exemple le deuxième ordinal infini comporte tous les entiers plus N. Parmi ces nombres ordinaux, qui cernent la notion de bon ordre, on définit des nombres dits cardinaux, qui eux, cernent la notion intuitive de nombre d'éléments. Parmi ces nombres cardinaux, certains particulièrement grands sont justement appelés grands cardinaux et cardinaux inaccessibles.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.