Loading AI tools
De Wikipédia, l'encyclopédie libre
En théorie des graphes, un graphe régulier est dit distance-régulier si pour tous sommets distants de , et pour tous entiers naturels , il y a toujours le même nombre de sommets qui sont à la fois à distance de et à distance de .
Familles de graphes définies par leurs automorphismes | ||||
---|---|---|---|---|
distance-transitif | → | distance-régulier | ← | fortement régulier |
↓ | ||||
symétrique (arc-transitif) | ← | t-transitif, (t ≥ 2) | symétrique gauche (en) | |
↓ | ||||
(si connexe) sommet-transitif et arête-transitif |
→ | régulier et arête-transitif | → | arête-transitif |
↓ | ↓ | ↓ | ||
sommet-transitif | → | régulier | → | (si biparti) birégulier |
↑ | ||||
graphe de Cayley | ← | zéro-symétrique | asymétrique |
De manière équivalente, un graphe est distance-régulier si pour tous sommets , le nombre de sommets voisins de à distance de et le nombre de sommets voisins de à distance de ne dépendent que de et de la distance entre et .
Formellement, tels que et
où est l’ensemble des sommets à distance de , et . La séquence forme un vecteur appelé vecteur d'intersection du graphe.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.