Loading AI tools
fonction en probabilités et statistiques De Wikipédia, l'encyclopédie libre
En probabilités, la fonction quantile est une fonction qui définit les quantiles.
Notation |
---|
Ensemble de définition |
---|
Soit X une variable aléatoire et F sa fonction de répartition, la fonction quantile est définie par
pour toute valeur de [1], la notation désignant l’inverse généralisé à gauche de .
Si F est une fonction strictement croissante et continue, alors est l'unique valeur de telle que . correspond alors à la fonction réciproque[1] de , notée . En revanche, pour les lois discrètes, les fonctions de répartition sont toutes en escalier, d'où l'intérêt de la définition précédente.
On dit que :
Par exemple, la fonction de répartition de la loi exponentielle de paramètre λ est :
La fonction quantile de cette loi revient, pour une valeur 0 ≤ p < 1, la valeur Q tel que soit :
Les quartiles sont donc :
De la même façon, on obtient les fonctions quantiles des lois suivantes :
La loi de Tukey-lambda est définie par sa fonction quantile :
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.