Loading AI tools
De Wikipédia, l'encyclopédie libre
En mathématiques et en analyse :
Dans les trois acceptions, chacune de ces fonctions peut s'exprimer comme une combinaison linéaire (donc finie) de fonctions caractéristiques.
Ces fonctions jouent un rôle important en théorie de l'intégration :
Propriété — Une fonction est simple si et seulement si elle est combinaison linéaire de fonctions caractéristiques.
Pour les fonctions simples (respectivement étagée, en escalier), les propriétés suivantes découlent de la définition et de la propriété précédente :
Théorème —
En théorie de la mesure, définir l'intégrale d'une fonction étagée positive est l'une des premières étapes conduisant à la définition de l'intégrale par rapport à une mesure positive.
Soit un espace mesuré. Pour tout on définit
Pour une fonction étagée positive la linéarité de l'intégrale impose la relation suivante :
Pour accorder à cette relation le statut de définition, il convient de s'assurer de sa consistance en vérifiant que l'intégrale d'une fonction étagée positive est indépendante de sa représentation sous forme de combinaison linéaire de fonctions caractéristiques.
On vérifie ensuite que cette application est linéaire, et qu'elle est croissante (si alors ) dès que est une mesure positive.
Dans le cas particulier où est un segment réel muni de la mesure de Lebesgue, est définie en particulier sur les fonctions en escalier, et satisfait la relation de Chasles.
Les fonctions étagées sont à la théorie de l'intégration de Lebesgue ce que les fonctions en escalier sont à l'intégration de Riemann ou de Kurzweil-Henstock.
Par exemple, dans le cas particulier où sont des intervalles contigus de même longueur , et où les sont les évaluations d'une fonction au centre des intervalles , l'expression est un cas particulier de somme de Riemann[2].
Généralement présentées sur un intervalle donné, les fonctions en escaliers peuvent être prolongées par 0 sur entier, ce qui permet de s'affranchir de l'intervalle et de considérer un unique ensemble de fonctions.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.