Remove ads
Fonction de la théorie des ensembles De Wikipédia, l'encyclopédie libre
En mathématiques, une fonction caractéristique, ou fonction indicatrice, est une fonction définie sur un ensemble E qui explicite l’appartenance ou non à un sous-ensemble F de E de tout élément de E.
Formellement, la fonction caractéristique d’un sous-ensemble F d’un ensemble E est une fonction :
D'autres notations souvent employées pour la fonction caractéristique de F sont 1F et 𝟙F, voire I (i majuscule).
Le terme de fonction indicatrice est parfois utilisé pour fonction caractéristique. Cette dénomination évite la confusion avec la fonction caractéristique utilisée en probabilité mais en induit une autre, avec la fonction indicatrice en analyse convexe.
(Attention : la fonction 1F peut désigner aussi la fonction identité).
Le principal intérêt de ces fonctions est de transformer des relations entre ensembles en relations entre des fonctions[1].
Si A et B sont deux sous-ensembles de E alors
et
L'application
est une bijection, de l'ensemble des parties de E dans l'ensemble {0, 1}E des applications de E dans {0, 1}.
Sa bijection réciproque est l'application
où f −1({1}) désigne l'image réciproque par f du singleton {1}, c'est-à-dire la partie de E constituée des éléments x tels que f(x) = 1.
Si F est une partie d'un espace topologique E et si la paire {0, 1} est munie de la topologie discrète (qui est la topologie induite par la topologie usuelle de ℝ), l'ensemble des points de E en lesquels la fonction χF : E → {0, 1} est discontinue est la frontière de F.
Si (E, Ω) est un espace mesurable (c'est-à-dire si Ω est une tribu sur E), une partie de E est un ensemble mesurable (c'est-à-dire appartient à cette tribu) si et seulement si son indicatrice est une fonction mesurable.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.