Loading AI tools
concept mathématique De Wikipédia, l'encyclopédie libre
En mathématiques, l'algèbre de Banach est une des structures fondamentales de l'analyse fonctionnelle, portant le nom du mathématicien polonais Stefan Banach (1892-1945).
Définition — Une algèbre de Banach sur le corps K = ℝ ou ℂ est une K-algèbre associative normée telle que l'espace vectoriel normé sous-jacent soit en outre un espace de Banach (c.-à-d. complet pour la norme).
On explicite cette définition : une algèbre de Banach A sur le corps K = ℝ ou ℂ est un espace vectoriel normé complet sur K (on note la norme) muni d'une loi interne notée multiplicativement, telle que quels que soient x, y, z éléments de A et élément de K :
On parle d'algèbre de Banach commutative quand la loi produit est commutative.
Suivant les auteurs, la structure d'algèbre exige ou non la présence d'un élément unité[1] (nécessairement unique). Les termes algèbre unitaire et algèbre non unitaire permettent de différencier les structures. Dans une algèbre de Banach unitaire non nulle, l'élément unité peut toujours être supposé de norme 1, quitte à remplacer la norme par une certaine norme équivalente.
Soit A une algèbre de Banach unitaire, d'élément unité e.
Comme dans tout anneau (et une algèbre associative unitaire en est en particulier un), les éléments inversibles de A forment un groupe. Tout élément e – u de la boule ouverte de centre e et de rayon 1 en fait partie, et son inverse peut être exprimé comme somme de la série géométrique de raison u, absolument convergente.
Il en résulte que le groupe G des éléments inversibles d'une algèbre de Banach unitaire est un ouvert[3].
L'application de passage à l'inverse est un homéomorphisme de G sur G, ce qui confère à G une structure de groupe topologique. Il s'agit même[3] d'une application différentiable (infiniment, par récurrence), la différentielle au point x étant donnée par :
L'hypothèse de complétude est essentielle et ces résultats tombent en défaut dans les algèbres normées non complètes. Par exemple considérons l'algèbre ℝ[X] des polynômes à coefficients réels, munie de n'importe quelle norme d'algèbre. Le groupe des inversibles est ℝ* qui est inclus dans le sous-espace vectoriel strict ℝ de ℝ[X] et est donc d'intérieur vide ; il n'est donc pas ouvert. Ceci montre en particulier que ℝ[X] ne peut être muni d'une structure de ℝ-algèbre normée complète. D'ailleurs, d'après le théorème de Baire, un espace vectoriel normé de dimension dénombrable n'est jamais complet : voir le § « Complétude » de l'article sur les espaces vectoriels normés.
Les idéaux maximaux d'une algèbre de Banach unitaire sont fermés.
Une algèbre de Banach unitaire complexe (non commutative a priori) dont tout élément non nul est inversible est isométriquement isomorphe au corps des nombres complexes (théorème de Gelfand-Mazur) ; en particulier, les idéaux maximaux des algèbres de Banach unitaires complexes sont des hyperplans fermés.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.