Espace de suites ℓp
De Wikipédia, l'encyclopédie libre
Remove ads
De Wikipédia, l'encyclopédie libre
En mathématiques, l'espace ℓp est un exemple d'espace vectoriel, constitué de suites à valeurs réelles ou complexes et qui possède, pour 1 ≤ p ≤ ∞, une structure d'espace de Banach.
Considérons l'espace vectoriel réel ℝn, c'est-à-dire l'espace des n-uplets de nombres réels.
La norme euclidienne d'un vecteur est donnée par :
Mais pour tout nombre réel p ≥ 1, on peut définir une autre norme sur ℝn, appelée la p-norme, en posant :
pour tout vecteur .
Pour tout p ≥ 1, ℝn muni de la p-norme est donc un espace vectoriel normé. Comme il est de dimension finie, il est complet pour cette norme.
La p-norme peut être étendue aux vecteurs ayant une infinité dénombrable de composantes, ce qui permet de définir l'espace ℓp (noté aussi ℓp(ℕ) car on peut définir de même ℓp(X) pour n'importe quel ensemble X fini ou infini, le cas où X a n éléments correspondant au paragraphe précédent).
Plus précisément, ℓp sera un sous-espace vectoriel de l'espace des suites infinies de nombres réels ou complexes, sur lequel la somme est définie par :
et la multiplication par un scalaire par :
On définit la p-norme d'une suite :
La série de droite n'est pas toujours convergente : par exemple, la suite (1, 1, 1, …) a une p-norme infinie pour n'importe quel p < ∞.
L'espace ℓp est défini comme l'ensemble des suites infinies de nombres réels ou complexes dont la p-norme est finie.
On définit aussi la « norme ∞ » comme :
et l'espace vectoriel correspondant ℓ∞ est l'espace des suites bornées.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.