Loading AI tools
De Wikipédia, l'encyclopédie libre
En mathématiques élémentaires, un plan est identifiable[1] à l'espace affine euclidien dont l'ensemble sous-jacent est le produit cartésien de , l'ensemble des nombres réels, par lui-même, soit
Les applications de sont définies par
;
;
.
Le produit scalaire permet de définir la structure topologique d'espace métrique du plan euclidien.
Ce plan est identifié au plan complexe; où l'on a défini en plus
.
Un repère orthonormé de ce plan est constitué d'un point origine et de deux vecteurs orthogonaux de norme 1. Il est utilisé par exemple pour la représentation graphique de courbes planes.
Le développement rapide de la géométrie analytique, notamment dès le 17è siècle grâce à Descartes et Pierre de Fermat, a peu à peu convaincu de la possibilité de substituer un espace affine par Par ailleurs, le développement de la géométrie projective au 19è siècle a permis de comprendre la raison profonde de ces identifications[1],[2].
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.