From Wikipedia, the free encyclopedia
Käänteisfunktio on funktio, joka kääntää alkuperäisen funktion kuvaussuunnan päinvastaiseksi. Funktion käänteisfunktiota merkitään . Tämä on vain merkintätapa, eikä liity mitenkään potenssilaskuihin. Käänteisfunktiossa alkuperäisen funktion arvot vastaavat käänteisfunktion muuttujan arvoja ja käänteisfunktion muuttujan arvot alkuperäisen funktion arvoja. Toisin sanoen käänteisfunktiolle ja alkuperäiselle funktiolle pätee . Kaikille funktioille ei ole olemassa käänteisfunktioita.[1]
Olkoon funktio. :n kuvajoukko on kaikkien niiden alkioiden joukko, joille jolloin . Jos on injektio (ehdosta aina seuraa ) on mahdollista määritellä funktio asettamalla :ksi se , jolle . Täten tulee toteuttamaan ehdon kaikilla ja kaikilla .
Funktiota sanotaan funktion käänteisfunktioksi ja merkitään symbolilla . Käänteisfunktion määrittelyjoukko on sama kuin alkuperäisen funktion arvojoukko. Käänteisfunktion arvojoukko on sama kuin alkuperäisen funktion määrittelyjoukko.
Jos funktio on funktion käänteisfunktio, on samalla myös funktion käänteisfunktio.
Olkoon kuvitteellisessa Mattilan perheessä 5 henkeä: Juhani (37v), Anna (32v), Siru (10v), Pasi (8v) ja Taru (5v). Olkoon f funktio, joka liittää perheenjäsenen nimen hänen ikäänsä. Olkoon M perheenjäsenien nimien joukko ja I perheenjäsenien ikien joukko. Toisin sanoen
Jos haluamme selvittää, kuka perheenjäsen on 32-vuotias, voimme muodostaa funktion, joka liittää perheenjäsenen iän hänen nimeensä. Tämä funktio on f:n käänteisfunktio:
f:n käänteisfunktio siis käänsi funktion kuvaussuunnan päinvastaiseksi.
Laskulausekkeella määritellyn reaalimuuttujan reaaliarvoisen funktion käänteisfunktion lauseke voidaan usein määrittää ratkaisemalla yhtälöstä . Esimerkiksi funktion , käänteisfunktioksi saadaan näin , .
Jotta reaalilukujen joukossa tai reaalilukuvälillä määritellyllä funktiolla olisi käänteisfunktio, :n on oltava aidosti kasvava tai aidosti vähenevä. Funktiolla f on käänteisfunktio jos ja vain jos f on bijektio.. Siten esimerkiksi funktiolla , ei ole käänteisfunktiota, mutta (positiivisten reaalilukujen joukossa) , , on käänteisfunktio , .
Jos ja ovat reaalimuuttujan derivoituvia funktioita, niin on voimassa kaava
Seamless Wikipedia browsing. On steroids.