Remove ads
From Wikipedia, the free encyclopedia
Hydrogeeli on polymeeri, joka pystyy imemään sisäänsä suuren määrän vettä. Veden imeytyminen aiheuttaa geelin turpoamisen. Hydrogeeli on kahdesta eri faasista muodostuva materiaali. Hydrogeeleissä huokoinen läpäisevä kiinteä polymeeri on veteen liukenematon kolmiulotteinen, luonnollisten tai synteettisten polymeerien ja nesteen verkosto.[1][2][3] Monet hydrogeelit ovat synteettisiä, mutta jotkut ovat myös peräisin luonnosta.[4][5] Termi ‘hydrogeeli’ keksittiin vuonna 1894. [6]
Hydrogeelit voidaan jakaa kahteen luokkaan, fysikaaliset ja kemialliset hydrogeelit, riippuen siitä millaisia polymeeriketjuja yhteen sitovat silloittajat ovat. Kemiallisissa hydrogeeleissä muodostuu vahvoja kovalenttisia sidoksia. Fysikaalisissa hydrogeleissä polymeerien väliset sidokset ovat heikkoja sidoksia, kuten vetysidoksia, van Der Waalsin voimat ja dipoli-dipolisidoksia.[7]
Kemialliset hydrogeelit voivat johtaa vahvoihin palautuviin tai irreversiibeleihin geeleihin kovalenttisen sidoksen vuoksi.[8] Kemialliset hydrogeelit, kuten disulfidisidosten kautta silloittuvien tiomeerien hydrogeelit, ovat myrkyttömiä ja niitä käytetään lukuisissa lääkevalmisteissa.[9][10][11] Sekä kemiallisilla että fysikaalisilla hydrogeeleillä on kyky palautua alkuperäisiin ominaisuuksiinsa yksinkertaisesti muuttamalla ulkoista ärsykettä, kuten pH:ta tai ionipitoisuutta (alginaattihappo) tai lämpötilaa. Fysikaalisilla hydrogeeleillä on yleensä korkea biologinen yhteensopivuus ja ne eivät ole myrkyllisiä.[7][12][13][14][15]
Kaikki hydrogeelit muodostuvat polymeereistä, jotka voidaan jakaa laajasti kahteen luokkaan alkuperänsä mukaan: luonnolliset tai synteettiset polymeerit.[16] Luonnollisia polymeerejä hydrogeelien valmistukseen ovat hyaluronihappo, kitosaani, hepariini, alginaattihappo, gelatiini ja fibrinogeeni. Yleisiä synteettisiä polymeerejä, joista voidaan muodostaa hydrogeelejä, ovat polyvinyylialkoholi, polyetyleeniglykoli, natriumpolyakrylaatti, akrylaattipolymeerit ja niiden kopolymeerit. Vaikka luonnolliset hydrogeelit ovat yleensä myrkyttömiä, ja tarjoavat usein muita etuja lääketieteelliseen käyttöön, kuten bioyhteensopivuus, biohajoavuus, antibiootti/antimykoottinen vaikutus ja parantavat läheisen kudoksen regeneraatiota, niiden stabiilisuus ja lujuus ovat yleensä paljon alhaisemmat kuin synteettisten hydrogeelien.[17] On myös synteettisiä hydrogeelejä, joita voidaan käyttää lääketieteellisiin sovelluksiin, kuten polyetyleeniglykoli (PEG), polyakrylaatti ja polyvinyylipyrrolidoni (PVP). [18]
Fysikaalisia hydrogeelejä voidaan valmistaa kahdella eri mekanismilla. Ensimmäinen on nanokuituisten peptidiketjun geeliytyminen, jota yleensä havaitaan oligopeptidien esiasteilla. Esiasteet kokoontuvat itsestään kuiduiksi, nauhoiksi ja putkiksi, jotka kietoutuvat muodostaen ei-kovalenttisia ristisidoksia. Toisessa mekanismissa polymeeriketjuja yhdistää heikot sidokset ja vesiliukoiset linkkerit ja tämä havaitaan yleensä pidemmissä monidomeenirakenteissa. [19]
Valopolymerointi on yksi käytetyimmistä polymerointimenetelmistä kemiallisten hydrogeelien valmistamisessa. Tässä menetelmässä fotoinitiaattoreita, yhdisteitä, jotka hajoavat fotonien absorptiosta, lisätään prekursoriliuokseen. Kun prekursoriliuos altistetaan voimakkaalle valonlähteelle, tavallisesti ultraviolettisäteilylle, fotoinitiaattorit hajoavat ja muodostavat vapaita radikaaleja, jotka aloittavat polymerointireaktion, joka muodostaa ristisidoksia polymeeriketjujen välille. Tämä reaktio pysähtyy, jos valonlähde poistetaan, jolloin hydrogeelissä muodostuneiden ristisidosten määrää voidaan hallita. [20] Hydrogeelin ominaisuudet riippuvat suuresti sen ristisidosten tyypistä ja määrästä, joten fotopolymerointi on suosittu valinta hydrogeelien hienosäätöön. Tätä tekniikkaa käytetään paljon solu- ja kudosteknologiasovelluksissa, koska sillä on kyky injektoida tai muovata soluilla ladattu prekursioliuos haavakohtaan ja jähmettää se paikallisesti.[21][20]
Fysikaalisesti silloitettuja hydrogeelejä voidaan valmistaa eri menetelmillä riippuen kyseessä olevan heikon sidoksen luonteesta. Polyvinyylialkoholihydrogeelit valmistetaan yleensä jäädytys-sulatustekniikalla. Tällöin liuos jäädytetään muutamaksi tunniksi, sitten sulatetaan huoneenlämmössä ja sykliä toistetaan, kunnes muodostuu vahva ja stabiili hydrogeeli.[22] Alginaattihydrogeelit muodostuvat alginaatin ja 2+ varautuneiden kationien välisistä ionivuorovaikutuksista. Suola, yleensä kalsiumkloridi, liuotetaan natriumalginaattivesiliuokseen, jolloin kalsiumionit muodostavat ionisidoksia alginaattiketjujen välille.[23] Gelatiini hydrogeelit muodostuvat lämpötilan muutoksesta. Gelatiinin vesiliuos muodostaa hydrogeelin alle 35-37℃:n lämpötilassa, kun kollageenikuitujen väliset Van Der Waalsin vuorovaikutukset muuttuvat voimakkaammiksi kuin molekyylin lämpövärähtelyt.[24]
Peptidipohjaisilla hydrogeeleillä on poikkeukselliset bioyhteensopivuus- ja biohajoavuusominaisuudet, mikä mahdollistaa niiden laajan käytön erityisesti biolääketieteessä. Sellaisenaan niiden fysikaalisia ominaisuuksia voidaan hienosäätää niiden käytön maksimoimiseksi. Menetelmiä tämän tekemiseksi ovat aminohapposekvenssin, pH:n, kiraalisuuden modulointi ja aromaattisten yhdisteiden lisääminen osaksi hydrogeeliä. [25] Aminohappojen järjestys sekvenssissä on ratkaiseva geeliytymisen kannalta. Yksi esimerkki tästä on lyhyt peptidisekvenssi Fmoc-Phe-Gly, joka muodostaa helposti hydrogeelin, kun taas Fmoc-Gly-Phe ei muodosta hydrogeeliä, sillä kahden vierekkäisen aromaattisen osan siirtäminen haittaa aromaattisia vuorovaikutuksia.[26][27] Myös pH:n muuttamisella voi olla samankaltaisia vaikutuksia, esimerkkinä naftaleenilla (Nap) modifioitujen dipeptidien Nap-Gly-Ala ja Nap-Ala-Gly käyttö, joissa pH:n lasku aiheuttaa edellisen geeliytymisen, mutta johtaa kiteytymiseen jälkimmäisessä.[28] Uusi stratedia homogeenisten ja toistettavien hydrogeelien muodostamiseksi on eräs pH-alennusmenetelmä, jossa käytetään glukono-δ-laktonia (GdL), jossa GdL hydrolysoituu vedessä glukonihapoksi.[29][30] Hydrolyysi on hidasta, mikä mahdollistaa tasaisen pH-muutoksen ja johtaa siten toistettaviin homogeenisiin geeleihin. Tämän lisäksi haluttu pH voidaan saavuttaa muuttamalla lisätyn GdL:n määrää. GdL:ää on käytetty useaan otteeseen Fmoc- ja Nap-dipeptidien hydrogelaatioon. [29][30] Toisaalta Morris et. al. raportoi GdL:n käytöstä “molekyyli laukaisimena” geeliytymisjärjestyksen ennustamiseksi ja hallitsemiseksi. Kiraalisuudella on myös olennainen rooli geelin muodostumisessa, ja jopa yksittäisen aminohapon kiraalisuuden muuttaminen sen luonnollisesta L-aminohaposta sen epäluonnolliseksi D-aminohapoksi voi vaikuttaa merkittävästi geeliytymisominaisuuksiin, sillä L-aminohapot eivät muodosta geelejä.[31] Monet tutkimukset ovat osoittaneet, että aromaattisilla vuorovaikutuksilla on keskeinen rooli hydrogeelin muodostumisessa π-π
vuorovaikutuksen geeliytymisen seurauksena. [32][33]
Yleisimmin havaittu ympäristön herkkyys hydrogeeleissä on vaste lämpötilaan.[34] Monilla hydrogeeleillä on lämpötilasta riippuvainen faasimuutos, joka voidaan luokitella joko ylempään kriittiseen liuoslämpötilaan (UCST) tai alempaan kriittiseen liuoslämpötilaan (LCST). UCST-hydrogeelien vesiliukoisuus lisääntyy korkeammissa lämpötiloissa, mikä johtaa niiden siirtymiseen geelistä (kiinteästä) liuokseen (nestemäiseksi) lämpötilan noustessa (samanlainen kuin puhtaiden materiaalien sulamispistekäyttäytyminen). Tämä ilmiö saa myös UCST-hydrogeelit laajenemaan (lisäämään niiden turpoamissuhdetta) lämpötilan noustessa niiden ollessa UCST:n alapuolella.[34] Kuitenkin hydrogeeleillä, joissa on LCST:t, on käänteinen lämpötilariippuvuus, jolloin niiden vesiliukoisuus laskee korkeammissa lämpötiloissa. LCST-hydrogeelit siirtyvät nestemäisestä liuoksesta kiinteään geeliin lämpötilan noustessa, ja ne myös kutistuvat (vähentävät turvotussuhdettaan) lämpötilan noustessa, kun ne ovat LCST:n yläpuolella.[34]
Eri hydrogeeleillä on erilainen lämpövaste, mikä vaikuttaa hydrogeelin valitsemiseen eri sovelluksiin. Esimerkiksi biolääketieteen alalla LCST-hydrogeelejä tutkitaan lääkkeiden annostelujärjestelminä, sillä ne ovat ruiskeena (nestemäisiä) huoneenlämmössä ja jähmettyvät sitten jäykäksi geeliksi altistuessaan ihmiskehon korkeammalle lämpötilalle.[34] On monia muitakin ärsykkeitä, joihin hydrogeelit voivat reagoida. Näitä ovat muun muassa pH, glukoosi, sähköiset signaalit, valo, paine, ionit, antigeenit ja paljon muuta.[34]
Hydrogeelien mekaanisia ominaisuuksia voidaan hienosäätää monin tavoin huomioimalla niiden hydrofobiset ominaisuudet.[34][35] Toinen menetelmä hydrogeelien lujuuden tai elastisuuden modifioimiseksi on päällystää ne vahvemmalle/jäykemmälle alustalle.[5] Muiden lisäaineiden, kuten nanohiukkasten ja mikrohiukkasten, on osoitettu muuntavan merkittävästi tiettyjen biolääketieteellisissä sovelluksissa käytettävien hydrogeelien jäykkyyttä ja geeliytymislämpötilaa.[36][37][38]
Vaikka hydrogeelin mekaanisia ominaisuuksia voidaan säätää ja muokata silloitustiheyden ja lisäaineiden avulla, mekaanisia ominaisuuksia voidaan myös parantaa tai optimoida erilaisiin sovelluksiin erityisillä käsittelytekniikoilla. Näitä tekniikoita ovat electrospinning, 3D/4D-tulostus, itsejärjestäytyminen ja kylmävalu. Yksi ainutlaatuinen käsittelytekniikka on monikerroksisten hydrogeelien muodostaminen erilaisten mekaanisten ominaisuuksien luomiseksi. Tämä voidaan tehdä polymeroimalla hydrogeelimatriisit kerros kerrokselta UV-polymeroinnin avulla. Tämä tekniikka voi olla hyödyllinen kun tehdään hydrogeelejä, jotka jäljittelevät nivelrustoa. Kyseinen tekniikka siis mahdollistaa materiaalin, jolla on kolme erillistä osaa, joilla on erilliset mekaaniset ominaisuudet.[39]
Toinen kehittyvä tekniikka hydrogeelimekaanisten ominaisuuksien optimoimiseksi on hyödyntää Hofmeister-sarjaa. Tämän ilmiön vuoksi lisäämällä suolaliuosta hydrogeeliaggregaatin polymeeriketjut kiteytyvät, mikä lisää hydrogeelin sitkeyttä. Tätä suolaamiseksi kutsuttua menetelmää sovelletaan polyvinyylialkoholi hydrogeeleihin lisäämällä natriumsulfaattisuolaliuosta.[40] Kylmävalu on kolmas menetelmä, jossa suunnattu lämpötilagradientti aikaansaadaan hydrogeeliin, joka muodostaa materiaaleja, joilla on anisotrooppisia mekaanisia ominaisuuksia. Polyvinyylialkoholi hydrogeelien kylmävalu- ja suolauskäsittelytekniikoita hyödynnetään, jotta saadaan aikaan hierarkkisia morfologioita ja anisotrooppisia mekaanisia ominaisuuksia.[41] Hydrogeelien suunnattu jäätyminen auttaa kohdistamaan ja yhdistämään polymeeriketjut luoden anisotrooppisia hunajakennoputkimaisia rakenteita, kun taas hydrogeelin suolaaminen tuottaa nanofibrilli verkon näiden kennoputkimaisten rakenteiden pinnalle. Vaikka näiden hydrogeelien vesipitoisuus on yli 70%, sitkeysarvot ovat selvästi korkeammat kuin vedettömien polymeerien, kuten polydimetyylisiloksaanin (PDMS), Kevlarin ja synteettisen kumin, sitkeysarvot. Arvot ylittävät myös luonnollisen jänteen ja hämähäkin silkin sitkeyden.[41]
Kudosten uusiutumista voidaan tukea implantoiduilla tai injektoiduilla hydrogeeleillä, jotka tarjoavat mekaanista tukea, paikallista lääkitystä tai soluterapiaa, paikallista solujen aktivointia tai immunomodulaatiota sekä nanohiukkasten kapselointia paikallista fototermistä tai brakyterapiaa varten.[42] Hydrogeeliset lääkeannostelujärjestelmät sopivat elimistöön biohajoavuutensa, bioyhteensopivuutensa ja myrkyttömyytensä vuoksi.[43][44] Materiaaleja, kuten kollageenia, kitosaania, selluloosaa ja polymaitohappo-koglykolihappo on käytetty laajasti lääkkeiden toimittamiseen elimiin, kuten silmiin[45], nenään, munuaisiin[46], keuhkoihin[47], suolistoon[48], ihoon[49] ja aivoihin. Tuleva työ keskittyy hydrogeelien myrkyllisyyden vähentämiseen ja bioyhteensopivuuden parantamiseen.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.