analyyttisiä funktioita, integrointia ja kuvauksia kompleksitasossa tutkiva matematiikan osa-alue From Wikipedia, the free encyclopedia
Funktioteoria eli kompleksianalyysi tutkii analyyttisiä funktioita, integrointia ja kuvauksia kompleksitasossa.[1] Funktioteoria keskittyy derivoituvien (differentioituvien) kompleksimuuttujan funktioiden (analyyttisten eli holomorfisten funktioiden) tutkimiseen.[1] Analyyttisten funktioiden teoria perustuu ratkaisevasti kompleksiseen integrointiin, joka huipentuu residylaskentaan (ranskaksi calcul des résidus, "jäännöslaskenta").
Suomessa on pitkät perinteet funktioteorian tutkimisessa. Tutkimussuunnan toi Suomeen Ernst Lindelöf, ja kansainvälistä huippua alalla ovat edustaneet muun muassa Rolf Nevanlinna ja ainoa suomalainen Fieldsin mitalisti, Lars Ahlfors.[2]
Kompleksianalyysia hyödynnetään usein muun muassa sähkötekniikassa, vaihtosähköön liittyvässä analyysissä, sillä signaalit sisältävät kaksi muuttuvaa suuretta, amplitudin sekä vaiheen, ja kompleksiaritmetiikan avulla jännitteet ja virrat voidaan esittää yhdellä kompleksiluvulla.[3][4][5]
Kompleksimuuttujan funktion sanotaan olevan analyyttinen kompleksitason alueessa , jos funktio on yksikäsitteisesti määritelty kyseisessä alueessa ja jos sillä on äärellinen derivaatta alueen jokaisessa pisteessä. Tämä analyyttisen funktion määritelmä on peräisin kompleksifunktioiden teorian perustajalta Augustin Louis Cauchy'lta.[1] Kompleksisen funktion derivaatta määritellään vastaavalla tavalla kuin reaalifunktion derivaatta. Erotusosamäärä vain muodostetaan silloin kompleksiluvuilla määritellylle funktiolle, ja rajankäynti derivaatan arvon saavuttamiseksi tapahtuu kompleksilukualueella eli
Tässä siis myös luku on kompleksiluku. Osoittautuu, että analyyttisellä funktiolla on jopa kaikkien kertalukujen jatkuvat derivaatat eli se on äärettömän monta kertaa jatkuvasti derivoituva.[6]
Bernhard Riemann määritteli analyyttisen funktion toisella tavalla Cauchyn–Riemannin differentiaaliyhtälöiden toteutumisen avulla. Molemmat määritelmät ovat kuitenkin yhtäpitävät. Riemann lähti liikkeelle siitä, että kompleksifunktio
missä , voidaan esittää kahden reaalimuuttujan ja avulla käyttäen kompleksifunktion jakamista reaali- ja imaginääriosiin. Kompleksifunktio on analyyttinen alueessa , jos "osafunktiot" ja ovat derivoituvia aluetta vastaavalla reaalisella tasoalueella ja toteuttavat siellä osittaisdifferentiaaliyhtälöt
Näitä yhtälöitä sanotaan Cauchyn–Riemannin differentiaaliyhtälöiksi ja niistä seuraa, että funktioilla ja on kaikkien kertalukujen jatkuvat osittaisderivaatat kyseisessä alueessa.
Analyyttisyyden määritelmä on yksinkertainen, mutta merkitsee erittäin vahvaa ja rajoittavaa ehtoa kompleksifunktion ominaisuuksille. Se edellyttää muun muassa sitä, että kahden reaalimuuttujan funktiot ja toteuttavat niin sanotun Laplacen osittaisdifferentiaaliyhtälön (lyhyesti Laplacen yhtälön) kahdessa ulottuvuudessa
Laplacen yhtälön kautta määriteltyjä funktioita, jotka siis ovat kompleksimuuttujan reaaliarvoisia funktioita, sanotaan harmonisiksi funktioiksi.
Jos kompleksifunktiolla on olemassa integraalifunktio eli funktio, jonka derivaatta kyseinen kompleksifunktio on, niin integraalifunktio on analyyttinen. Tässä tapauksessa alkuperäisen kompleksifunktion käyräintegraali alueessa riippuu vain käyrän päätepisteistä eikä siitä, mitä reittiä pitkin integrointi tehdään. Erityisesti käyräintegraali suljetun käyrän ympäri on aina nolla.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.