From Wikipedia, the free encyclopedia
در جبر، معادله مربعی (به انگلیسی: Quadratic Equation) (که quadratus در لاتین به معنای مربع است) (یا معادله درجه دو)، هر معادلهای است که بتوان آن را به صورت فرم استاندارد زیر نوشت:
که در آن یک نامعلوم (یا متغیر، مجهول و ...) و نمایشگر اعداد معلوماند با این شرط که 0 . اگر ، آنگاه این معادله خطی است و دیگر مربعی نخواهد بود، چرا که دیگر جمله وجود نخواهد داشت. اعداد را ضرایب معادله، ثابتها نامیده میشوند.[1]
مقادیر هایی که در معادله صدق کنند را حل (یا جواب) معادله یا ریشهها یا صفرهای طرف چپ عبارت مینامند. اگر همهٔ ضرایب معادله مربعی اعداد حقیقی باشند، آنگاه معادله یا دو ریشه حقیقی، یا یک ریشه مضاعف حقیقی و یا دو ریشه مختلط که مزدوج مختلط یکدیگرند، دارد. پس میتوان در حالت کلی دو جواب مختلط برای معادله مربعی در نظر گرفت؛ و در حالتی که ریشه مضاعف دارد، جوابهای آن را دوتا جواب برابر هم انگاشت. معادله مربعی را در حالت کلی میتوان به صورت زیر تجزیه کرد:
که در آن و جوابهای x هستند.
مربع کامل کردن معادله مربعی به فرم استاندارد منجر به فرمولهای مربعی برحسب ضرایب میشود. جوابهای مسائلی که برحسب معادلات مربعی قابل بیاناند، حداقل تا ۲۰۰۰ قبل از میلاد شناخته شده بودند.
چون معادله مربعی فقط با یک متغیر سروکار دارد به آن "تک متغیره" گویند. معادله مربعی تنها شامل توانهای نامنفی x است. ضمن این که چندجملهای درجه-دویی است، چرا که بزرگترین توانش برابر ۲ است.
معادلات درجه دو با روشهای آزمون و خطا، فاکتورگیری و تجزیه، روش مربع کامل، روش هندسی، روش خوارزمی، نمودار تابع (رسم نمودار)، روش دلتا، روش نیوتون و روشهای دیگر حل میشوند.
در این روش با استفاده از حدس مقادیر مختلفی را برای متغیر در معادله قرار میدهیم و بررسی میکنیم که آیا این مقدار در معادله صدق میکند یا خیر.
روش آزمون و خطا در واقع دادن عدد به معادله برای پیدا کردن جواب میباشد. در این روش باید سعی کنیم مقادیر را چنان انتخاب کنیم که ما را به سمت صفر راهنمایی کند. برای این کار بهترین راه پیدا کردن یک جواب مثبت و یک جواب منفی برای حاصل معادله میباشد. با محدود کردن این بازه خود را به جواب نزدیکتر میکنیم. در نهایت باید به جوابی که در معادله صدق میکند برسیم. این روش حل معمولاً به ما جواب تقریبی میدهد.
این روش موقعی کارایی مناسبی دارد که بتوان به طریقی با تقسیم کل معادله بر ضریب جمله دو ثابت و ای به دست آورد که بین آنها رابطهای به شکل و بهسرعت به ذهنمان برسد. به این روش که منتج شده از اتّحاد ریاضیاتی معروف به جمله مشترک است، روش حل تجزیهای گفته میشود. معادله بر اساس این اتحاد به شکل در میآید و در این حالت بهآسانی با برابر صفر قرار دادن هر پرانتز به جوابهای میرسیم.
مثال: میخواهیم معادله را حل کنیم. ابتدا دو طرف را بر دو تقسیم میکنیم تا ضریب یک شود. سپس در صدد یافتن m و n برمیآییم. همانطور که میبینیم یعنی به عبارتی جمع دو عدد میشود، ۴- و ضربشان هم، ۳ پس جوابها به صورت میباشند.
این روش بر مبنای یکی از معروفترین اتّحادهای ریاضی، معروف به اتحاد مربع دوجملهای به دست آمدهاست. برای هر دو عبارت ریاضی مثل A و B این اتحاد به این صورت ارائه میگردد:
حال ما باید را به صورت در نظر بگیریم و را به صورت و از آنجا را به دست آورده و مقدار را از طرف چپ معادله کم و زیاد کنیم و پس از مرتب کردن و فاکتورگیری، معادله را به شکل
درآوریم؛ که درصورتی معادله جواب حقیقی دارد که مقداری مثبت یا صفر شود.
مثال: میخواهیم را حل کنیم. و سپس نتیجه میشود: و داریم: و از آنجا به دست میآوریم:
اگر یک معادله درجه دو به صورت زیر باشد:
راه حل عمومی آن به این شکل است:
که نماد "±" به معنی هر دو است.
و |
هر دو جوابهایی از معادله درجه ۲ هستند.
در صورتی که کوچکتر از صفر باشد، معادله جواب حقیقی ندارد و در صورتی که برابر صفر باشد دو حل به یک حل تبدیل شده و گفته میشود معادله یک ریشه مضاعف دارد.
اعداد ثابت و به ترتیب بیانگر جمع و ضرب دو ریشه هستند.
دو ریشه | |
یک ریشه | |
جواب نداریم |
در این روش دو نکته حائز اهمیت است:
مثال:
⇒
مجموع و حاصل ضرب ریشههای یک معادله درجه دو در حل مسائل از اهمیت خاصی برخوردار است. معمولاً در ریاضیات مجموع ریشهها را با S و ضرب ریشهها را با P نمایش میدهند.
با فرض اینکه ریشهها و باشند، مجموع و حاصل ضرب ریشههای معادله درجه دو به صورت زیر به دست میآیند:
و میتوان معادله را بصورت زیر بازنویسی کرد:
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.