Set theory

branch of mathematics that studies sets, which are collections of objects From Wikiquote, the free quote compendium

Set theory is the branch of mathematical logic that studies sets, which informally are collections of objects.

Quotes

  • Does set theory, once we get beyond the integers, refer to an existing reality, or must it be regarded, as formalists would regard it, as an interesting formal game? ... A typical argument for the objective reality of set theory is that it is obtained by extrapolation from our intuitions of finite objects, and people see no reason why this has less validity. Moreover, set theory has been studied for a long time with no hint of a contradiction. It is suggested that this cannot be an accident, and thus set theory reflects an existing reality. In particular, the Continuum Hypothesis and related statements are true or false, and our task is to resolve them.
    • Paul Cohen: (2005). "Skolem and pessimism about proof in mathematics". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 363 (1835): 2407–2418. ISSN 1364-503X. DOI:10.1098/rsta.2005.1661. (quote from p. 2416)
Wikipedia
Wikipedia
Wikipedia has an article about:

Mathematics
Mathematicians
(by country)

Abel Anaxagoras Archimedes Aristarchus of Samos Averroes Arnold Banach Cantor Cartan Chern Cohen Descartes Diophantus Erdős Euclid Euler Fourier Gauss Gödel Grassmann Grothendieck Hamilton Hilbert Hypatia Lagrange Laplace Leibniz Milnor Newton von Neumann Noether Penrose Perelman Poincaré Pólya Pythagoras Riemann Russell Schwartz Serre Tao Tarski Thales Turing Weil Weyl Wiles Witten

Numbers

1 23 360 e π Fibonacci numbers Irrational number Negative number Number Prime number Quaternion Octonion

Concepts

Abstraction Algorithms Axiomatic system Completeness Deductive reasoning Differential equation Dimension Ellipse Elliptic curve Exponential growth Infinity Integration Geodesic Induction Proof Partial differential equation Principle of least action Prisoner's dilemma Probability Randomness Theorem Topological space Wave equation

Results

Euler's identity Fermat's Last Theorem

Pure math

Abstract algebra Algebra Analysis Algebraic geometry (Sheaf theory) Algebraic topology Arithmetic Calculus Category theory Combinatorics Commutative algebra Complex analysis Differential calculus Differential geometry Differential topology Ergodic theory Foundations of mathematics Functional analysis Game theory Geometry Global analysis Graph theory Group theory Harmonic analysis Homological algebra Invariant theory Logic Non-Euclidean geometry Nonstandard analysis Number theory Numerical analysis Operations research Representation theory Ring theory Set theory Sheaf theory Statistics Symplectic geometry Topology

Applied math

Computational fluid dynamics Econometrics Fluid mechanics Mathematical physics Science

History of math

Ancient Greek mathematics Euclid's Elements History of algebra History of calculus History of logarithms Indian mathematics Principia Mathematica

Other

Mathematics and mysticism Mathematics education Mathematics, from the points of view of the Mathematician and of the Physicist Philosophy of mathematics Unification in science and mathematics


Wikiwand - on

Seamless Wikipedia browsing. On steroids.