The theory of functions of several complex variables has gone from its infancy with the work of Hartogs, Levi and Poincaré shortly after the turn of the century to its current role as a central field of modern mathematics, much as its predecessor, function theory in one complex variable, did in the 19th century. A central figure in this development has been Henri Cartan, whose series of papers in this field starting in the 1920's dealt with fundamental questions relating to Nevanlinna theory, generalizations of the Mittag-Leffler and Weierstrass theorems to functions of several variables, problems concerned with biholomorphic mappings and the biholomorphic equivalence problem, domains of holomorphy and holomorphic convexity, etc. The major developments in the theory from 1930 to 1950 came from Cartan and his school in France, Behnke's school in Münster, and Oka in Japan. The central ideas up to that time were synthesized in Cartan's Séminaires in the early 1950's, and these were very influential to the next several generations of mathematicians. Cartan's accomplishments were broad and he influenced mathematics through his writing, his teaching, his seminars, and his students in a remarkable manner.
R Remmert and J-P Serre (eds.), Henri Cartan Oeuvres (3 vols.) (Berlin-New York, 1979).