Remove ads
A planned Chinese space telescope From Wikipedia, the free encyclopedia
Xuntian (Chinese: 巡天; pinyin: Xúntiān; lit: Tour of Heaven),[a] also known as the Chinese Space Station Telescope[5] (CSST) (Chinese: 巡天空间望远镜; pinyin: Xúntiān Kōngjiān Wàngyuǎnjìng) is a planned Chinese space telescope currently under development.[6]
Mission type | Astronomy | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Operator | CNSA | ||||||||||||
Mission duration | 10+ years (planned) | ||||||||||||
Spacecraft properties | |||||||||||||
Dry mass | 15,500 kilograms (34,200 lb)[1] | ||||||||||||
Start of mission | |||||||||||||
Launch date | 2026[2] (planned) | ||||||||||||
Rocket | Long March 5B | ||||||||||||
Launch site | Wenchang Satellite Launch Center | ||||||||||||
Contractor | CASC | ||||||||||||
Orbital parameters | |||||||||||||
Reference system | Low Earth orbit | ||||||||||||
Main telescope | |||||||||||||
Diameter | 2 metres (6.6 ft) | ||||||||||||
Focal length | 28 m (92 ft) | ||||||||||||
Wavelengths | 255 ~ 1000 nm (Survey camera), 0.41~0.51 THz (590~730 μm) (Terahertz receiver) | ||||||||||||
Resolution | 0.15 arcsec | ||||||||||||
| |||||||||||||
It will feature a 2-meter (6.6 foot) diameter primary mirror and is expected to have a field of view 300–350 times larger than the Hubble Space Telescope.[7] This will allow the telescope to image up to 40 percent of the sky using its 2.5 gigapixel camera.
As of 2024, Xuntian is scheduled for launch no earlier than late 2026[2][8][9] on a Long March 5B rocket to co-orbit with the Tiangong space station in slightly different orbital phases, which will allow for periodic docking with the station.[10]
This state-of-the-art telescope, characterized by its off-axis design without any obstruction, sidesteps diffraction challenges associated with mirror support structures. As a result, its point spread function (PSF) remains unscathed, presenting a valuable asset for weak-lensing shear measurements.
The primary mission of the CSST revolves around high-resolution large-area multiband imaging and slitless spectroscopy surveys, spanning the wavelength range of 255–1,000 nm. Precise cosmology serves as the principal scientific driver behind this ambitious endeavor, with a focus on observing regions at median-to-high Galactic and ecliptic latitudes. Over a period of 10 years, the survey camera is slated to cover approximately 17,500 square degrees of the sky in various bands, reaching point-source 5σ limiting magnitudes of about 26 (AB mag) in g and r bands.
The CSST's spectral resolution (R=λ/Δλ) for the slitless spectrograph averages no less than 200, attaining wide-band-equivalent limiting magnitudes in GV (400–620 nm) and GI (620–1,000 nm) bands at about 23 mag. Beyond its wide-area survey, the CSST will target specific deep fields, aiming for observations that surpass the depth of the broader survey by at least one magnitude. The collective strengths of its angular resolution, depth, wavelength range, and capacity for both imaging and spectroscopy, coupled with extensive sky coverage, render the CSST survey highly competitive.
Notably, the CSST's observations are poised to complement and enhance other contemporaneous large-scale projects, including the Vera C. Rubin Observatory, the Euclid Space Telescope, and the Nancy Grace Roman Space Telescope.
Xuntian is equipped with five first-generation instruments, including a survey camera, a terahertz receiver, a multichannel imager, an integral field spectrograph, and a cool planet imaging coronagraph.[12]
The survey camera is also known as the multi-color photometry and slitless spectroscopy survey module. The module is located at the main focal plane and divided into the multi-color photometry submodule of 7 bands (NUV, u, g, r, i, z, y) and the slitless spectroscopy submodule of 3 bands (GU, GV, GI). The multi-color photometry submodule includes 18 filters, covering 60% of the area of this module. The slitless spectroscopy submodule includes 12 gratings, covering the other 40% of the area.
The terahertz receiver, also known as the high sensitivity terahertz detection module (HSTDM), enables terahertz (THz) astronomical observations from space. Conducting THz observations in space eliminates Earth's atmospheric absorption. HSTDM is a high-resolution spectrometer and the first space heterodyne receiver using niobium nitride (NbN)-based superconducting tunnel junction (Superconductor-Insulator-Superconductor (SIS)) mixer (the NbN SIS mixer).[13]
The Multichannel imager (MCI) has three channels covering the same wavelength range as the survey camera from the NUV to NIR bands, and these channels can work simultaneously. Three sets of filters, i.e., narrow-, medium-, and wide-band filters, will be installed on the MCI to perform extreme-deep field surveys with a field of view of 7.5′×7.5′. The magnitude limit can be stacked to a depth of 29–30 AB mag in three channels. It will study the formation and evolution of high-z galaxies, properties of dark matter and dark energy, and also can be used to calibrate the photo-z measurements with its nine medium-band filters for the main surveys.[14]
The CSST-IFS (Integral Field Spectrograph) is one of the 5 instruments onboard the CSST. The key advantages of the CSST-IFS are the high spatial resolution of 0.2" and the full range optical wavelength coverage (0.35-1.0 μm). Considering the limitation of the 2-meter aperture of the CSST, the CSST-IFS is optimal for targeting compact and bright sources, which therefore will be irreplaceable for studying galactic central regions (AGN feedback) and star-forming regions.[15]
The cool planet imaging coronagraph (CPI-C) aims to realize high-contrast (< 10-8) direct imaging of exoplanets with an inner working angle (IWA) of 0.35′′ in the visible (0.6328 μm). It plans to follow up exoplanets discovered by radial velocity observations, study planet formation and evolution, and probe protoplanetary disks.[16] CPI-C works at 0.53-1.6 μm and is equipped with 7 broad passbands.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.