In six-dimensional geometry, a stericated 6-simplex is a convex uniform 6-polytope with 4th order truncations (sterication) of the regular 6-simplex.
![]() 6-simplex ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
![]() Stericated 6-simplex ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
![]() Steritruncated 6-simplex ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
![]() Stericantellated 6-simplex ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
![]() Stericantitruncated 6-simplex ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
![]() Steriruncinated 6-simplex ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
![]() Steriruncitruncated 6-simplex ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
![]() Steriruncicantellated 6-simplex ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
![]() Steriruncicantitruncated 6-simplex ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Orthogonal projections in A6 Coxeter plane |
---|
There are 8 unique sterications for the 6-simplex with permutations of truncations, cantellations, and runcinations.
Stericated 6-simplex
Stericated 6-simplex | |
---|---|
Type | uniform 6-polytope |
Schläfli symbol | t0,4{3,3,3,3,3} |
Coxeter-Dynkin diagrams | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5-faces | 105 |
4-faces | 700 |
Cells | 1470 |
Faces | 1400 |
Edges | 630 |
Vertices | 105 |
Vertex figure | |
Coxeter group | A6, [35], order 5040 |
Properties | convex |
Alternate names
- Small cellated heptapeton (Acronym: scal) (Jonathan Bowers)[1]
Coordinates
The vertices of the stericated 6-simplex can be most simply positioned in 7-space as permutations of (0,0,1,1,1,1,2). This construction is based on facets of the stericated 7-orthoplex.
Images
Ak Coxeter plane | A6 | A5 | A4 |
---|---|---|---|
Graph | ![]() |
![]() |
![]() |
Dihedral symmetry | [7] | [6] | [5] |
Ak Coxeter plane | A3 | A2 | |
Graph | ![]() |
![]() | |
Dihedral symmetry | [4] | [3] |
Steritruncated 6-simplex
Steritruncated 6-simplex | |
---|---|
Type | uniform 6-polytope |
Schläfli symbol | t0,1,4{3,3,3,3,3} |
Coxeter-Dynkin diagrams | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5-faces | 105 |
4-faces | 945 |
Cells | 2940 |
Faces | 3780 |
Edges | 2100 |
Vertices | 420 |
Vertex figure | |
Coxeter group | A6, [35], order 5040 |
Properties | convex |
Alternate names
- Cellitruncated heptapeton (Acronym: catal) (Jonathan Bowers)[2]
Coordinates
The vertices of the steritruncated 6-simplex can be most simply positioned in 7-space as permutations of (0,0,1,1,1,2,3). This construction is based on facets of the steritruncated 7-orthoplex.
Images
Ak Coxeter plane | A6 | A5 | A4 |
---|---|---|---|
Graph | ![]() |
![]() |
![]() |
Dihedral symmetry | [7] | [6] | [5] |
Ak Coxeter plane | A3 | A2 | |
Graph | ![]() |
![]() | |
Dihedral symmetry | [4] | [3] |
Stericantellated 6-simplex
Stericantellated 6-simplex | |
---|---|
Type | uniform 6-polytope |
Schläfli symbol | t0,2,4{3,3,3,3,3} |
Coxeter-Dynkin diagrams | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5-faces | 105 |
4-faces | 1050 |
Cells | 3465 |
Faces | 5040 |
Edges | 3150 |
Vertices | 630 |
Vertex figure | |
Coxeter group | A6, [35], order 5040 |
Properties | convex |
Alternate names
- Cellirhombated heptapeton (Acronym: cral) (Jonathan Bowers)[3]
Coordinates
The vertices of the stericantellated 6-simplex can be most simply positioned in 7-space as permutations of (0,0,1,1,2,2,3). This construction is based on facets of the stericantellated 7-orthoplex.
Images
Ak Coxeter plane | A6 | A5 | A4 |
---|---|---|---|
Graph | ![]() |
![]() |
![]() |
Dihedral symmetry | [7] | [6] | [5] |
Ak Coxeter plane | A3 | A2 | |
Graph | ![]() |
![]() | |
Dihedral symmetry | [4] | [3] |
Stericantitruncated 6-simplex
stericantitruncated 6-simplex | |
---|---|
Type | uniform 6-polytope |
Schläfli symbol | t0,1,2,4{3,3,3,3,3} |
Coxeter-Dynkin diagrams | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5-faces | 105 |
4-faces | 1155 |
Cells | 4410 |
Faces | 7140 |
Edges | 5040 |
Vertices | 1260 |
Vertex figure | |
Coxeter group | A6, [35], order 5040 |
Properties | convex |
Alternate names
- Celligreatorhombated heptapeton (Acronym: cagral) (Jonathan Bowers)[4]
Coordinates
The vertices of the stericanttruncated 6-simplex can be most simply positioned in 7-space as permutations of (0,0,0,1,2,3,4). This construction is based on facets of the stericantitruncated 7-orthoplex.
Images
Ak Coxeter plane | A6 | A5 | A4 |
---|---|---|---|
Graph | ![]() |
![]() |
![]() |
Dihedral symmetry | [7] | [6] | [5] |
Ak Coxeter plane | A3 | A2 | |
Graph | ![]() |
![]() | |
Dihedral symmetry | [4] | [3] |
Steriruncinated 6-simplex
steriruncinated 6-simplex | |
---|---|
Type | uniform 6-polytope |
Schläfli symbol | t0,3,4{3,3,3,3,3} |
Coxeter-Dynkin diagrams | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5-faces | 105 |
4-faces | 700 |
Cells | 1995 |
Faces | 2660 |
Edges | 1680 |
Vertices | 420 |
Vertex figure | |
Coxeter group | A6, [35], order 5040 |
Properties | convex |
Alternate names
- Celliprismated heptapeton (Acronym: copal) (Jonathan Bowers)[5]
Coordinates
The vertices of the steriruncinated 6-simplex can be most simply positioned in 7-space as permutations of (0,0,1,2,2,3,3). This construction is based on facets of the steriruncinated 7-orthoplex.
Images
Ak Coxeter plane | A6 | A5 | A4 |
---|---|---|---|
Graph | ![]() |
![]() |
![]() |
Dihedral symmetry | [7] | [6] | [5] |
Ak Coxeter plane | A3 | A2 | |
Graph | ![]() |
![]() | |
Dihedral symmetry | [4] | [3] |
Steriruncitruncated 6-simplex
steriruncitruncated 6-simplex | |
---|---|
Type | uniform 6-polytope |
Schläfli symbol | t0,1,3,4{3,3,3,3,3} |
Coxeter-Dynkin diagrams | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5-faces | 105 |
4-faces | 945 |
Cells | 3360 |
Faces | 5670 |
Edges | 4410 |
Vertices | 1260 |
Vertex figure | |
Coxeter group | A6, [35], order 5040 |
Properties | convex |
Alternate names
- Celliprismatotruncated heptapeton (Acronym: captal) (Jonathan Bowers)[6]
Coordinates
The vertices of the steriruncittruncated 6-simplex can be most simply positioned in 7-space as permutations of (0,0,0,1,2,3,4). This construction is based on facets of the steriruncitruncated 7-orthoplex.
Images
Ak Coxeter plane | A6 | A5 | A4 |
---|---|---|---|
Graph | ![]() |
![]() |
![]() |
Dihedral symmetry | [7] | [6] | [5] |
Ak Coxeter plane | A3 | A2 | |
Graph | ![]() |
![]() | |
Dihedral symmetry | [4] | [3] |
Steriruncicantellated 6-simplex
steriruncicantellated 6-simplex | |
---|---|
Type | uniform 6-polytope |
Schläfli symbol | t0,2,3,4{3,3,3,3,3} |
Coxeter-Dynkin diagrams | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5-faces | 105 |
4-faces | 1050 |
Cells | 3675 |
Faces | 5880 |
Edges | 4410 |
Vertices | 1260 |
Vertex figure | |
Coxeter group | A6, [35], order 5040 |
Properties | convex |
Alternate names
- Bistericantitruncated 6-simplex as t1,2,3,5{3,3,3,3,3}
- Celliprismatorhombated heptapeton (Acronym: copril) (Jonathan Bowers)[7]
Coordinates
The vertices of the steriruncitcantellated 6-simplex can be most simply positioned in 7-space as permutations of (0,0,0,1,2,3,4). This construction is based on facets of the steriruncicantellated 7-orthoplex.
Images
Ak Coxeter plane | A6 | A5 | A4 |
---|---|---|---|
Graph | ![]() |
![]() |
![]() |
Dihedral symmetry | [7] | [6] | [5] |
Ak Coxeter plane | A3 | A2 | |
Graph | ![]() |
![]() | |
Dihedral symmetry | [4] | [3] |
Steriruncicantitruncated 6-simplex
Steriuncicantitruncated 6-simplex | |
---|---|
Type | uniform 6-polytope |
Schläfli symbol | t0,1,2,3,4{3,3,3,3,3} |
Coxeter-Dynkin diagrams | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5-faces | 105 |
4-faces | 1155 |
Cells | 4620 |
Faces | 8610 |
Edges | 7560 |
Vertices | 2520 |
Vertex figure | |
Coxeter group | A6, [35], order 5040 |
Properties | convex |
Alternate names
- Great cellated heptapeton (Acronym: gacal) (Jonathan Bowers)[8]
Coordinates
The vertices of the steriruncicantittruncated 6-simplex can be most simply positioned in 7-space as permutations of (0,0,1,2,3,4,5). This construction is based on facets of the steriruncicantitruncated 7-orthoplex.
Images
Ak Coxeter plane | A6 | A5 | A4 |
---|---|---|---|
Graph | ![]() |
![]() |
![]() |
Dihedral symmetry | [7] | [6] | [5] |
Ak Coxeter plane | A3 | A2 | |
Graph | ![]() |
![]() | |
Dihedral symmetry | [4] | [3] |
Related uniform 6-polytopes
The truncated 6-simplex is one of 35 uniform 6-polytopes based on the [3,3,3,3,3] Coxeter group, all shown here in A6 Coxeter plane orthographic projections.
Notes
References
External links
Wikiwand - on
Seamless Wikipedia browsing. On steroids.