In seven-dimensional geometry, a stericated 7-orthoplex is a convex uniform 7-polytope with 4th order truncations (sterication) of the regular 7-orthoplex.
Orthogonal projections in B6 Coxeter plane | ||
---|---|---|
7-orthoplex |
Stericated 7-orthoplex |
Steritruncated 7-orthoplex |
Bisteritruncated 7-orthoplex |
Stericantellated 7-orthoplex |
Stericantitruncated 7-orthoplex |
Bistericantitruncated 7-orthoplex |
Steriruncinated 7-orthoplex |
Steriruncitruncated 7-orthoplex |
Steriruncicantellated 7-orthoplex |
Bisteriruncitruncated 7-orthoplex |
Steriruncicantitruncated 7-orthoplex |
There are 24 unique sterication for the 7-orthoplex with permutations of truncations, cantellations, and runcinations. 14 are more simply constructed from the 7-cube.
This polytope is one of 127 uniform 7-polytopes with B7 symmetry.
Stericated 7-orthoplex
Stericated 7-orthoplex | |
---|---|
Type | uniform 7-polytope |
Schläfli symbol | t0,4{35,4} |
Coxeter-Dynkin diagrams | |
6-faces | |
5-faces | |
4-faces | |
Cells | |
Faces | |
Edges | |
Vertices | |
Vertex figure | |
Coxeter groups | B7, [4,35] |
Properties | convex |
Alternate names
- Small cellated hecatonicosoctaexon (acronym: ) (Jonathan Bowers)[1]
Images
Coxeter plane | B7 / A6 | B6 / D7 | B5 / D6 / A4 |
---|---|---|---|
Graph | |||
Dihedral symmetry | [14] | [12] | [10] |
Coxeter plane | B4 / D5 | B3 / D4 / A2 | B2 / D3 |
Graph | |||
Dihedral symmetry | [8] | [6] | [4] |
Coxeter plane | A5 | A3 | |
Graph | |||
Dihedral symmetry | [6] | [4] |
Steritruncated 7-orthoplex
steritruncated 7-orthoplex | |
---|---|
Type | uniform 7-polytope |
Schläfli symbol | t0,1,4{35,4} |
Coxeter-Dynkin diagrams | |
6-faces | |
5-faces | |
4-faces | |
Cells | |
Faces | |
Edges | |
Vertices | |
Vertex figure | |
Coxeter groups | B7, [4,35] |
Properties | convex |
Alternate names
- Cellitruncated hecatonicosoctaexon (acronym: ) (Jonathan Bowers)[2]
Images
Coxeter plane | B7 / A6 | B6 / D7 | B5 / D6 / A4 |
---|---|---|---|
Graph | |||
Dihedral symmetry | [14] | [12] | [10] |
Coxeter plane | B4 / D5 | B3 / D4 / A2 | B2 / D3 |
Graph | |||
Dihedral symmetry | [8] | [6] | [4] |
Coxeter plane | A5 | A3 | |
Graph | |||
Dihedral symmetry | [6] | [4] |
Bisteritruncated 7-orthoplex
bisteritruncated 7-orthoplex | |
---|---|
Type | uniform 7-polytope |
Schläfli symbol | t1,2,5{35,4} |
Coxeter-Dynkin diagrams | |
6-faces | |
5-faces | |
4-faces | |
Cells | |
Faces | |
Edges | |
Vertices | |
Vertex figure | |
Coxeter groups | B7, [4,35] |
Properties | convex |
Alternate names
- Bicellitruncated hecatonicosoctaexon (acronym: ) (Jonathan Bowers)[3]
Images
Coxeter plane | B7 / A6 | B6 / D7 | B5 / D6 / A4 |
---|---|---|---|
Graph | |||
Dihedral symmetry | [14] | [12] | [10] |
Coxeter plane | B4 / D5 | B3 / D4 / A2 | B2 / D3 |
Graph | |||
Dihedral symmetry | [8] | [6] | [4] |
Coxeter plane | A5 | A3 | |
Graph | |||
Dihedral symmetry | [6] | [4] |
Stericantellated 7-orthoplex
Stericantellated 7-orthoplex | |
---|---|
Type | uniform 7-polytope |
Schläfli symbol | t0,2,4{35,4} |
Coxeter-Dynkin diagrams | |
6-faces | |
5-faces | |
4-faces | |
Cells | |
Faces | |
Edges | |
Vertices | |
Vertex figure | |
Coxeter groups | B7, [4,35] |
Properties | convex |
Alternate names
- Cellirhombated hecatonicosoctaexon (acronym: ) (Jonathan Bowers)[4]
Images
Coxeter plane | B7 / A6 | B6 / D7 | B5 / D6 / A4 |
---|---|---|---|
Graph | |||
Dihedral symmetry | [14] | [12] | [10] |
Coxeter plane | B4 / D5 | B3 / D4 / A2 | B2 / D3 |
Graph | |||
Dihedral symmetry | [8] | [6] | [4] |
Coxeter plane | A5 | A3 | |
Graph | |||
Dihedral symmetry | [6] | [4] |
Stericantitruncated 7-orthoplex
stericantitruncated 7-orthoplex | |
---|---|
Type | uniform 7-polytope |
Schläfli symbol | t0,1,2,4{35,4} |
Coxeter-Dynkin diagrams | |
6-faces | |
5-faces | |
4-faces | |
Cells | |
Faces | |
Edges | |
Vertices | |
Vertex figure | |
Coxeter groups | B7, [4,35] |
Properties | convex |
Alternate names
- Celligreatorhombated hecatonicosoctaexon (acronym: ) (Jonathan Bowers)[5]
Images
Coxeter plane | B7 / A6 | B6 / D7 | B5 / D6 / A4 |
---|---|---|---|
Graph | |||
Dihedral symmetry | [14] | [12] | [10] |
Coxeter plane | B4 / D5 | B3 / D4 / A2 | B2 / D3 |
Graph | |||
Dihedral symmetry | [8] | [6] | [4] |
Coxeter plane | A5 | A3 | |
Graph | |||
Dihedral symmetry | [6] | [4] |
Bistericantitruncated 7-orthoplex
bistericantitruncated 7-orthoplex | |
---|---|
Type | uniform 7-polytope |
Schläfli symbol | t1,2,3,5{35,4} |
Coxeter-Dynkin diagrams | |
6-faces | |
5-faces | |
4-faces | |
Cells | |
Faces | |
Edges | |
Vertices | |
Vertex figure | |
Coxeter groups | B7, [4,35] |
Properties | convex |
Alternate names
- Bicelligreatorhombated hecatonicosoctaexon (acronym: ) (Jonathan Bowers)[6]
Images
Coxeter plane | B7 / A6 | B6 / D7 | B5 / D6 / A4 |
---|---|---|---|
Graph | |||
Dihedral symmetry | [14] | [12] | [10] |
Coxeter plane | B4 / D5 | B3 / D4 / A2 | B2 / D3 |
Graph | |||
Dihedral symmetry | [8] | [6] | [4] |
Coxeter plane | A5 | A3 | |
Graph | |||
Dihedral symmetry | [6] | [4] |
Steriruncinated 7-orthoplex
Steriruncinated 7-orthoplex | |
---|---|
Type | uniform 7-polytope |
Schläfli symbol | t0,3,4{35,4} |
Coxeter-Dynkin diagrams | |
6-faces | |
5-faces | |
4-faces | |
Cells | |
Faces | |
Edges | |
Vertices | |
Vertex figure | |
Coxeter groups | B7, [4,35] |
Properties | convex |
Alternate names
- Celliprismated hecatonicosoctaexon (acronym: ) (Jonathan Bowers)[7]
Images
Coxeter plane | B7 / A6 | B6 / D7 | B5 / D6 / A4 |
---|---|---|---|
Graph | too complex | ||
Dihedral symmetry | [14] | [12] | [10] |
Coxeter plane | B4 / D5 | B3 / D4 / A2 | B2 / D3 |
Graph | |||
Dihedral symmetry | [8] | [6] | [4] |
Coxeter plane | A5 | A3 | |
Graph | |||
Dihedral symmetry | [6] | [4] |
Steriruncitruncated 7-orthoplex
steriruncitruncated 7-orthoplex | |
---|---|
Type | uniform 7-polytope |
Schläfli symbol | t0,1,3,4{35,4} |
Coxeter-Dynkin diagrams | |
6-faces | |
5-faces | |
4-faces | |
Cells | |
Faces | |
Edges | |
Vertices | |
Vertex figure | |
Coxeter groups | B7, [4,35] |
Properties | convex |
Alternate names
- Celliprismatotruncated hecatonicosoctaexon (acronym: ) (Jonathan Bowers)[8]
Images
Coxeter plane | B7 / A6 | B6 / D7 | B5 / D6 / A4 |
---|---|---|---|
Graph | |||
Dihedral symmetry | [14] | [12] | [10] |
Coxeter plane | B4 / D5 | B3 / D4 / A2 | B2 / D3 |
Graph | |||
Dihedral symmetry | [8] | [6] | [4] |
Coxeter plane | A5 | A3 | |
Graph | |||
Dihedral symmetry | [6] | [4] |
Steriruncicantellated 7-orthoplex
steriruncicantellated 7-orthoplex | |
---|---|
Type | uniform 7-polytope |
Schläfli symbol | t0,2,3,4{35,4} |
Coxeter-Dynkin diagrams | |
6-faces | |
5-faces | |
4-faces | |
Cells | |
Faces | |
Edges | |
Vertices | |
Vertex figure | |
Coxeter groups | B7, [4,35] |
Properties | convex |
Alternate names
- Celliprismatorhombated hecatonicosoctaexon (acronym: ) (Jonathan Bowers)[9]
Images
Coxeter plane | B7 / A6 | B6 / D7 | B5 / D6 / A4 |
---|---|---|---|
Graph | |||
Dihedral symmetry | [14] | [12] | [10] |
Coxeter plane | B4 / D5 | B3 / D4 / A2 | B2 / D3 |
Graph | |||
Dihedral symmetry | [8] | [6] | [4] |
Coxeter plane | A5 | A3 | |
Graph | |||
Dihedral symmetry | [6] | [4] |
Steriruncicantitruncated 7-orthoplex
steriruncicantitruncated 7-orthoplex | |
---|---|
Type | uniform 7-polytope |
Schläfli symbol | t0,1,2,3,4{35,4} |
Coxeter-Dynkin diagrams | |
6-faces | |
5-faces | |
4-faces | |
Cells | |
Faces | |
Edges | |
Vertices | |
Vertex figure | |
Coxeter groups | B7, [4,35] |
Properties | convex |
Alternate names
- Great cellated hecatonicosoctaexon (acronym: ) (Jonathan Bowers)[10]
Images
Coxeter plane | B7 / A6 | B6 / D7 | B5 / D6 / A4 |
---|---|---|---|
Graph | |||
Dihedral symmetry | [14] | [12] | [10] |
Coxeter plane | B4 / D5 | B3 / D4 / A2 | B2 / D3 |
Graph | |||
Dihedral symmetry | [8] | [6] | [4] |
Coxeter plane | A5 | A3 | |
Graph | |||
Dihedral symmetry | [6] | [4] |
Notes
References
External links
Wikiwand in your browser!
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.