Loading AI tools
Rocket designed to take measurements during its flight From Wikipedia, the free encyclopedia
A sounding rocket or rocketsonde, sometimes called a research rocket or a suborbital rocket, is an instrument-carrying rocket designed to take measurements and perform scientific experiments during its sub-orbital flight. The rockets are used to launch instruments from 48 to 145 km (30 to 90 miles)[1] above the surface of the Earth, the altitude generally between weather balloons and satellites; the maximum altitude for balloons is about 40 km (25 miles) and the minimum for satellites is approximately 121 km (75 miles).[2] Certain sounding rockets have an apogee between 1,000 and 1,500 km (620 and 930 miles), such as the Black Brant X and XII, which is the maximum apogee of their class. For certain purposes Sounding Rockets may be flown to altitudes as high as 3,000 kilometers to allow observing times of around 40 minutes to provide geophysical observations of the magnetosphere, ionosphere, thermosphere and mesosphere.[3] Sounding rockets have been used for the examination of atmospheric nuclear tests by revealing the passage of the shock wave through the atmosphere.[4] [5] In more recent times Sounding Rockets have been used for other nuclear weapons research.[6] Sounding rockets often use military surplus rocket motors.[7] NASA routinely flies the Terrier Mk 70 boosted Improved Orion, lifting 270–450-kg (600–1,000-pound) payloads into the exoatmospheric region between 97 and 201 km (60 and 125 miles).[8]
The origin of the term comes from nautical vocabulary to sound, which is to throw a weighted line from a ship into the water to measure the water's depth. The term itself has its etymological roots in the Romance languages word for probe, of which there are nouns sonda and sonde and verbs like sondear which means "to do a survey or a poll". Sounding in the rocket context is equivalent to "taking a measurement".[7]
The basic elements of a modern sounding rocket are a solid-fuel rocket motor and a science payload.[7] In certain Sounding Rockets the payload may even be nothing more than a smoke trail as in the Nike Smoke which is used to determine wind directions and strengths more accurately than may be determined by weather balloons. Or a Sounding Rocket such as the Nike-Apache may deposit sodium clouds to observe very high altitude winds. Larger, higher altitude rockets have multiple stages to increase altitude and/or payload capability. The freefall part of the flight is an elliptic trajectory with vertical major axis allowing the payload to appear to hover near its apogee.[2] The average flight time is less than 30 minutes; usually between five and 20 minutes.[2] The rocket consumes its fuel on the first stage of the rising part of the flight, then often separates and falls away, leaving the payload to complete the arc, sometimes descending under a drag source such as a small balloon or a parachute.[7]
Sounding rockets have utilized balloons, airplanes and artillery as "first stages." Project Farside[9][10] utilized a Rockoon composed of a 106,188-m3 (3,750-ft3) balloon, lifting a four stage rocket composed of 4 Recrute rockets as the first stage with 1 Recruit as the second stage, with 4 Arrow II motors composing the third stage and finally a single Arrow II as the fourth stage. Sparoair, air launched from Navy F4D and F-4 fighters were examples of air launched sounding rockets. There were also examples of artillery launched sounding rockets including Project HARP's 5", 7", and 15" guns, sometimes having additional Martlet rocket stages.[11]
This article may require copy editing for grammar, style, cohesion, tone, or spelling. (October 2024) |
The earliest Sounding Rockets were liquid propellant rockets such as the WAC Corporal, Aerobee, and Viking. The German V-2 served both the US and the USSR's R-1 missile as sounding rockets during the immediate Post World War II periods. During the 1950s and later inexpensive surplus military boosters such as those used by the Nike, Talos, Terrier, and Sparrow came to be used. Since the 1960s rockets specifically designed for the purpose such as the Black Brant series have dominated sounding rockets, though often having additional stages, many from military surplus.
The earliest attempts at developing Sounding Rockets were in the Soviet Union. While all of the early rocket developers were concerned largely with developing the ability to launch rockets some had the objective of investigating the stratosphere and beyond. The All-Union Conference on the Study of Stratosphere was held in Leningrad (now St. Petersburg) in 1936. While the conference primarily dealt with balloon Radiosondes, there was a small group of rocket developers who sought to develop "recording rockets" to explore the stratosphere and beyond.[12] Amongst the speakers at the conference was Sergey Korolev[citation needed] who later became the leading figure of the Soviet space program.
Specifically interested in sounding rocket design were V. V. Razumov, of the Leningrad Group for the Study of Jet Propulsion. A. I. Polyarny working in a special group within the Society for Assistance to the Defense, Aviation and Chemical Construction of the U.S.S.R in Moscow designed the R-06 which eventually flew but not in the meteorological role.[12]
The early Soviet efforts to develop a sounding rocket were the earliest efforts to develop a sounding rocket and ultimately failed before WWII.[12] P. I. Ivanov built a three-stage which flew in March 1946. At the end of summer 1946 development ended because it lacked sufficient thrust to loft a sufficient research payload.[12]
The first successful sounding rocket was created at the California Institute of Technology, where before World War II there was a group of rocket enthusiasts led by Frank Malina, under the aegis of Theodore von Kármán, known amidst the people of the CIT as the "Suicide Squad." The immediate goal of the Suicide Squad was exploring the upper atmosphere which required developing the means of lofting instruments to high altitude and recovering the results. After the start of WWII the CIT rocketry enthusiast found themselves involved in a number of defense programs, one of which, deemed Corporal, was intended to produce a bombardment guided missile the Corporal. Eventually known as the MGM-5 Corporal it became the first guided missile deployed by the US Army.
During WWII the Signal Corps created a requirement for a sounding rocket to carry 25 pounds (11 kg) of instruments to 100,000 feet (30 km) or higher.[13] To meet that goal Malina proposed a small Liquid-propellant rocket to provide the GALCIT team necessary experience to aid in developing the Corporal missile.[14][15] Malina with Tsien Hsue-shen (Qian Xuesen in Pinyin transliteration), wrote "Flight analysis of a Sounding Rocket with Special Reference to Propulsion by Successive Impulses." As the Signal Corps rocket was being developed for the Corporal project, and lacked any guidance mechanism, it was Without Attitude Control. Thus it was named the WAC Corporal. The WAC Corporal served as the foundation of Sounding Rocketry in the USA. WAC Corporal was developed in two versions the second of which was much improved. After the war the WAC Corporal was in competition for sounding mission funding with the much larger captured V-2 rocket being tested by the U.S. Army. WAC Corporal was overshadowed at its job of cost-effectively lifting pounds of experiments to altitude, thus it effectively became obsolescent. WAC Corporals were later modified to become the upper stage of the first two staged rocket the RTV-G-4 Bumper.
Captured V-2s dominated American sounding rockets and other rocketry developments during the late 1940s.[16] To meet the need for replacement a new sounding rocket was developed by the Aerojet Corporation to meet a requirement of the Applied Physics Laboratory and the Naval Research Laboratory. Over 1,000 Aerobees of various versions for varied customers were flow between 1947 and 1985.[17]: 57 [18] One engine produced for the Aerobee ultimately powered the second stage of the Vanguard (rocket), the first designed for the purpose Satellite Launch Vehicle, Vanguard. The AJ10 engine used by many Aerobees eventually evolved into the AJ10-190 which formed the Orbital Maneuvering System of the Space Shuttle.[19]
The Viking (rocket) was intended from the start by the Navy not only to be a sounding rocket capable of replacing, even exceeding the V-2, but also to advance guided missile technology.[20] The Viking was controlled by a multi-axis guidance system with gimbled Reaction Motors XLR10-RM-2 engine. The Viking was developed through two major versions. After the United States announced it intended to launch a satellite in the International Geophysical Year (1957-1958) the Viking was chosen as the first stage of the Vanguard Satellite Launch Vehicle. The last two Vikings were fired as Vanguard Test Vehicle 1 and 2.[21]
During the post WWII era the USSR also pursued V-2 base sounding rockets. The last two R-1As were flown in 1949 as sounding rockets. They were followed between July 1951 and June 1956 by 4 R-1B, 2 R-1V, 3 R-1D and 5 R-1Es, and 1 R-1E (A-1).[22] The improved V-2 descendant the R-2A could reach 120 miles and were flown between April 1957 and May 1962.[23] Fifteen R-5Vs were flown from June 1965 to October 1983. Two R-5 VAOs were flown in September 1964 and October 1965.[24] The first solid-fueled Soviet sounding rocket was the M-100.[25] Some 6640 M-100 sounding rockets were flown from 1957 to 1990.
Other early users of Sounding Rockets were Britain, France and Japan.
Great Britain developed the Skylark (rocket) series and the later Skua for the International Geophysical Year.[17]
France had begun the design of a Super V-2 but that program had been abandoned in the late 1940s due to the inability of France to manufacture all components necessary. Though development of the Veronique (rocket) was began in 1949, it was not until 1952 that the first full scale Veronique was launched. Veronique variants were flown until 1974.[17][26] The Monica (rocket) family, an all solid fueled which was pursued in a number of versions and later replaced by the ONERA. series of rockets.[17]
Japan was another early user with the Kappa (rocket). Japan also pursued Rockoons.[17]
The People's Republic of China was the last nation to launch a new liquid fueled sounding rocket, the T-7.[27] It was first fired from a very primitive launch site, where the "command center" and borrowed power generator were in a grass hut separated from the launcher by a small river. There was no communications equipment- not even a telephone between the command post and the rocket launcher. The T-7 led to the T-7M, T-7A, T-7A-S, T-7A-S2 and T-7/GF-01A. The T-7/ GF-01A was used in 1969 to launch the FSW satellite technology development missions. Thus the I-7 led to the first Chinese satellite, the Dong Fang Hong 1 (The East is Red 1), launched by a DF-1. Vital to the development of Chinese rocketry and the Dong Feng-1 was Qian Xuesen (Tsien Hsue-shen in Wade Guiles transliteration) who with Theodore von Kármán and the California Institute of Technology "Suicide Squad" created the first successful Sounding Rocket the WAC Corporal.
By the early 1960s the Sounding Rocket was established technology.
Sounding rockets are advantageous for some research because of their low cost,[2] relatively short lead time (sometimes less than six months)[7] and their ability to conduct research in areas inaccessible to either balloons or satellites. They are also used as test beds for equipment that will be used in more expensive and risky orbital spaceflight missions.[2] The smaller size of a sounding rocket also makes launching from temporary sites possible, allowing field studies at remote locations, and even in the middle of the ocean, if fired from a ship.[28]
Weather observations, up to an altitude of 75 km, are done with rocketsondes, a kind of sounding rocket for atmospheric observations that consists of a rocket and radiosonde. The sonde records data on temperature, moisture, wind speed and direction, wind shear, atmospheric pressure, and air density during the flight. Position data (altitude and latitude/longitude) may also be recorded.
Common meteorological rockets are the Loki and Super Loki, typically 3.7 m tall and powered by a 10 cm diameter solid fuel rocket motor. The rocket motor separates at an altitude of 1500 m and the rest of the rocketsonde coasts to apogee (highest point). This can be set to an altitude of 20 km to 113 km.
Sounding rockets are commonly used for:
Due to the high military relevance of ballistic missile technology, there has always been a close relationship between sounding rockets and military missiles. It is a typical dual-use technology, which can be used for both civil and military purposes.[30] During the Cold War, the Federal Republic of Germany cooperated on this topic with countries that had not signed the Non-Proliferation Treaty on Nuclear Weapons at that time, such as Brazil, Argentina and India. In the course of investigations by the German peace movement, this cooperation was revealed by a group of physicists in 1983.[31] The international discussion that was thus set in motion led to the development of the Missile Technology Control Regime (MTCR) at the level of G7 states. Since then, lists of technological equipment whose export is subject to strict controls have been drawn up within the MTCR framework.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.