Number, approximately 1.3247 From Wikipedia, the free encyclopedia
In mathematics, the plastic ratio is a geometrical proportion close to 53/40. Its true value is the real solution of the equation x3 = x + 1.
Quick Facts Rationality, Symbol ...
Plastic ratio
Triangles with sides in ratio ρ form a closed spiral
Rationality
irrational algebraic
Symbol
ρ
Representations
Decimal
1.3247179572447460259609088...(sequence A060006 in the OEIS)
Algebraic form
real root of x3 = x + 1
Continued fraction (linear)
[1;3,12,1,1,3,2,3,2,4,2,141,80,...] [1] not periodic infinite
Close
The adjective plastic does not refer to the artificial material, but to the formative and sculptural qualities of this ratio, as in plastic arts.
Three quantities a > b > c > 0 are in the plastic ratio if
.
The ratio is commonly denoted
Let and , then
.
It follows that the plastic ratio is found as the unique real solution of the cubic equation The decimal expansion of the root begins as (sequence A060006 in the OEIS).
The plastic ratio is the smallest Pisot number.[4] Because the absolute value of the algebraic conjugates is smaller than 1, powers of generate almost integers. For example: After 29 rotation steps the phases of the inward spiraling conjugate pair – initially close to – nearly align with the imaginary axis.
(which is less than 1/3 the eccentricity of the orbit of Venus).
In his quest for perceptible clarity, the Dutch Benedictine monk and architect Dom Hans van der Laan (1904-1991) asked for the minimum difference between two sizes, so that we will clearly perceive them as distinct. Also, what is the maximum ratio of two sizes, so that we can still relate them and perceive nearness. According to his observations, the answers are 1/4 and 7/1, spanning a single order of size.[8] Requiring proportional continuity, he constructed a geometric series of eight measures (types of size) with common ratio 2 / (3/4 + 1/71/7) ≈ ρ. Put in rational form, this architectonic system of measure is constructed from a subset of the numbers that bear his name.
The Van der Laan numbers have a close connection to the Perrin and Padovan sequences. In combinatorics, the number of compositions of n into parts 2 and 3 is counted by the nth Van der Laan number.
The first few terms are 1, 0, 1, 1, 1, 2, 2, 3, 4, 5, 7, 9, 12, 16, 21, 28, 37, 49, 65, 86,... (sequence A182097 in the OEIS).
The limit ratio between consecutive terms is the plastic ratio.
More information ...
Table of the eight Van der Laan measures
k
n - m
err
interval
0
3 - 3
1 /1
0
minor element
1
8 - 7
4 /3
1/116
major element
2
10 - 8
7 /4
-1/205
minor piece
3
10 - 7
7 /3
1/116
major piece
4
7 - 3
3 /1
-1/12
minor part
5
8 - 3
4 /1
-1/12
major part
6
13 - 7
16 /3
-1/14
minor whole
7
10 - 3
7 /1
-1/6
major whole
Close
The first 14 indices n for which is prime are n = 5, 6, 7, 9, 10, 16, 21, 32, 39, 86, 130, 471, 668, 1264 (sequence A112882 in the OEIS).[9] The last number has 154 decimal digits.
The sequence can be extended to negative indices using
The characteristic equation of the recurrence is . If the three solutions are real root and conjugate pair and , the Van der Laan numbers can be computed with the Binet formula[11]
, with real and conjugates and the roots of .
Since and , the number is the nearest integer to , with n > 1 and 0.3106288296404670777619027...
Coefficients result in the Binet formula for the related sequence .
The first few terms are 3, 0, 2, 3, 2, 5, 5, 7, 10, 12, 17, 22, 29, 39, 51, 68, 90, 119,... (sequence A001608 in the OEIS).
This Perrin sequence has the Fermat property: if p is prime, . The converse does not hold, but the small number of pseudoprimes makes the sequence special.[12] The only 7 composite numbers below 108 to pass the test are n = 271441, 904631, 16532714, 24658561, 27422714, 27664033, 46672291.[13]
The Van der Laan numbers are obtained as integral powers n > 2 of a matrix with real eigenvalue[10]
and initiator . The series of words produced by iterating the substitution have the property that the number of c's, b's and a's are equal to successive Van der Laan numbers. Their lengths are
Associated to this string rewriting process is a set composed of three overlapping self-similar tiles called the Rauzy fractal, that visualizes the combinatorial information contained in a multiple-generation letter sequence.[14]
There are precisely three ways of partitioning a square into three similar rectangles:[15][16]
The trivial solution given by three congruent rectangles with aspect ratio 3:1.
The solution in which two of the three rectangles are congruent and the third one has twice the side lengths of the other two, where the rectangles have aspect ratio 3:2.
The solution in which the three rectangles are all of different sizes and where they have aspect ratio ρ2. The ratios of the linear sizes of the three rectangles are: ρ (large:medium); ρ2 (medium:small); and ρ3 (large:small). The internal, long edge of the largest rectangle (the square's fault line) divides two of the square's four edges into two segments each that stand to one another in the ratio ρ. The internal, coincident short edge of the medium rectangle and long edge of the small rectangle divides one of the square's other, two edges into two segments that stand to one another in the ratio ρ4.
The fact that a rectangle of aspect ratio ρ2 can be used for dissections of a square into similar rectangles is equivalent to an algebraic property of the number ρ2 related to the Routh–Hurwitz theorem: all of its conjugates have positive real part.[17][18]
Given a rectangle of height 1, length and diagonal length (according to ). The triangles on the diagonal have altitudes each perpendicular foot divides the diagonal in ratio .
On the left-hand side, cut off a square of side length 1 and mark the intersection with the falling diagonal. The remaining rectangle now has aspect ratio (according to ). Divide the original rectangle into four parts by a second, horizontal cut passing through the intersection point.[20]
The parent rho-squared rectangle and the two scaled copies along the diagonal have linear sizes in the ratios The areas of the rectangles opposite the diagonal are both equal to , with aspect ratios (below) and (above).
If the diagram is further subdivided by perpendicular lines through the feet of the altitudes, the lengths of the diagonal and its (thus far) seven distinct subsections are in ratios where corresponds to the span between both feet.
Nested rho-squared rectangles with diagonal lengths in ratios converge at distance from the intersection point. This is equal to the unique positive node that optimizes cubic Lagrange interpolation on the interval [−1,1]. With optimal node set T = {−1,−t, t, 1}, the Lebesgue function evaluates to the minimal cubic Lebesgue constant at critical point[21] Since , this is also the distance from the point of convergence to the upper left vertex.
was first studied by Axel Thue in 1912 and by G. H. Hardy in 1919.[4] French high school student Gérard Cordonnier discovered the ratio for himself in 1924. In his correspondence with Hans van der Laan a few years later, he called it the radiant number (French: le nombre radiant). Van der Laan initially referred to it as the fundamental ratio (Dutch: de grondverhouding), using the plastic number (Dutch: het plastische getal) from the 1950s onward.[22] In 1944 Carl Siegel showed that ρ is the smallest possible Pisot–Vijayaraghavan number and suggested naming it in honour of Thue.
Unlike the names of the golden and silver ratios, the word plastic was not intended by van der Laan to refer to a specific substance, but rather in its adjectival sense, meaning something that can be given a three-dimensional shape.[23] This, according to Richard Padovan, is because the characteristic ratios of the number, 3/4 and 1/7, relate to the limits of human perception in relating one physical size to another. Van der Laan designed the 1967 St. Benedictusberg Abbey church to these plastic number proportions.[24]
The plastic number is also sometimes called the silver number, a name given to it by Midhat J. Gazalé[25] and subsequently used by Martin Gardner,[26] but that name is more commonly used for the silver ratio1 + √2, one of the ratios from the family of metallic means first described by Vera W. de Spinadel. Gardner suggested referring to ρ2 as "high phi", and Donald Knuth created a special typographic mark for this name, a variant of the Greek letter phi ("φ") with its central circle raised, resembling the Georgian letter pari ("Ⴔ").
Solutions of equations similar to :
Golden ratio – the only positive solution of the equation
Voet, Caroline[in Dutch] (2019). "1:7 and a series of 8". The digital study room of Dom Hans van der Laan. Van der Laan Foundation. Retrieved 28 November 2023.
Freiling, C.; Rinne, D. (1994), "Tiling a square with similar rectangles", Mathematical Research Letters, 1 (5): 547–558, doi:10.4310/MRL.1994.v1.n5.a3, MR1295549
Rack, Heinz-Joachim (2013). "An example of optimal nodes for interpolation revisited". In Anastassiou, George A.; Duman, Oktay (eds.). Advances in applied Mathematics and Approximation Theory 2012. Springer Proceedings in Mathematics and Statistics. Vol.41. pp.117–120. doi:10.1007/978-1-4614-6393-1. ISBN978-1-4614-6393-1.
Shannon, A. G.; Anderson, P. G.; Horadam, A. F. (2006). "Properties of Cordonnier, Perrin and Van der Laan numbers". International Journal of Mathematical Education in Science and Technology. 37 (7): 825–831. doi:10.1080/00207390600712554. S2CID119808971.