Loading AI tools
Mathematics term From Wikipedia, the free encyclopedia
In mathematics and computer science, a morphic word or substitutive word is an infinite sequence of symbols which is constructed from a particular class of endomorphism of a free monoid.
You can help expand this article with text translated from the corresponding article in French. (June 2021) Click [show] for important translation instructions.
|
Every automatic sequence is morphic.[1]
Let f be an endomorphism of the free monoid A∗ on an alphabet A with the property that there is a letter a such that f(a) = as for a non-empty string s: we say that f is prolongable at a. The word
is a pure morphic or pure substitutive word. Note that it is the limit of the sequence a, f(a), f(f(a)), f(f(f(a))), ... It is clearly a fixed point of the endomorphism f: the unique such sequence beginning with the letter a.[2][3] In general, a morphic word is the image of a pure morphic word under a coding, that is, a morphism that maps letter to letter.[1]
If a morphic word is constructed as the fixed point of a prolongable k-uniform morphism on A∗ then the word is k-automatic. The n-th term in such a sequence can be produced by a finite state automaton reading the digits of n in base k.[1]
A D0L system (deterministic context-free Lindenmayer system) is given by a word w of the free monoid A∗ on an alphabet A together with a morphism σ prolongable at w. The system generates the infinite D0L word ω = limn→∞ σn(w). Purely morphic words are D0L words but not conversely. However, if ω = uν is an infinite D0L word with an initial segment u of length |u| ≥ |w|, then zν is a purely morphic word, where z is a letter not in A.[7]
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.