Remove ads
Regular tilings of ≥3D spaces with hypercubes From Wikipedia, the free encyclopedia
In geometry, a hypercubic honeycomb is a family of regular honeycombs (tessellations) in n-dimensional spaces with the Schläfli symbols {4,3...3,4} and containing the symmetry of Coxeter group Rn (or B~n–1) for n ≥ 3.
A regular square tiling. 1 color |
A cubic honeycomb in its regular form. 1 color |
A checkboard square tiling 2 colors |
A cubic honeycomb checkerboard. 2 colors |
Expanded square tiling 3 colors |
Expanded cubic honeycomb 4 colors |
4 colors |
8 colors |
The tessellation is constructed from 4 n-hypercubes per ridge. The vertex figure is a cross-polytope {3...3,4}.
The hypercubic honeycombs are self-dual.
Coxeter named this family as δn+1 for an n-dimensional honeycomb.
A Wythoff construction is a method for constructing a uniform polyhedron or plane tiling.
The two general forms of the hypercube honeycombs are the regular form with identical hypercubic facets and one semiregular, with alternating hypercube facets, like a checkerboard.
A third form is generated by an expansion operation applied to the regular form, creating facets in place of all lower-dimensional elements. For example, an expanded cubic honeycomb has cubic cells centered on the original cubes, on the original faces, on the original edges, on the original vertices, creating 4 colors of cells around in vertex in 1:3:3:1 counts.
The orthotopic honeycombs are a family topologically equivalent to the cubic honeycombs but with lower symmetry, in which each of the three axial directions may have different edge lengths. The facets are hyperrectangles, also called orthotopes; in 2 and 3 dimensions the orthotopes are rectangles and cuboids respectively.
δn | Name | Schläfli symbols | Coxeter-Dynkin diagrams | ||
---|---|---|---|---|---|
Orthotopic {∞}(n) (2m colors, m < n) |
Regular (Expanded) {4,3n–1,4} (1 color, n colors) |
Checkerboard {4,3n–4,31,1} (2 colors) | |||
δ2 | Apeirogon | {∞} | |||
δ3 | Square tiling | {∞}(2) {4,4} |
|||
δ4 | Cubic honeycomb | {∞}(3) {4,3,4} {4,31,1} |
|||
δ5 | 4-cube honeycomb | {∞}(4) {4,32,4} {4,3,31,1} |
|||
δ6 | 5-cube honeycomb | {∞}(5) {4,33,4} {4,32,31,1} |
|||
δ7 | 6-cube honeycomb | {∞}(6) {4,34,4} {4,33,31,1} |
|||
δ8 | 7-cube honeycomb | {∞}(7) {4,35,4} {4,34,31,1} |
|||
δ9 | 8-cube honeycomb | {∞}(8) {4,36,4} {4,35,31,1} |
|||
δn | n-hypercubic honeycomb | {∞}(n) {4,3n-3,4} {4,3n-4,31,1} |
... |
Space | Family | / / | ||||
---|---|---|---|---|---|---|
E2 | Uniform tiling | 0[3] | δ3 | hδ3 | qδ3 | Hexagonal |
E3 | Uniform convex honeycomb | 0[4] | δ4 | hδ4 | qδ4 | |
E4 | Uniform 4-honeycomb | 0[5] | δ5 | hδ5 | qδ5 | 24-cell honeycomb |
E5 | Uniform 5-honeycomb | 0[6] | δ6 | hδ6 | qδ6 | |
E6 | Uniform 6-honeycomb | 0[7] | δ7 | hδ7 | qδ7 | 222 |
E7 | Uniform 7-honeycomb | 0[8] | δ8 | hδ8 | qδ8 | 133 • 331 |
E8 | Uniform 8-honeycomb | 0[9] | δ9 | hδ9 | qδ9 | 152 • 251 • 521 |
E9 | Uniform 9-honeycomb | 0[10] | δ10 | hδ10 | qδ10 | |
E10 | Uniform 10-honeycomb | 0[11] | δ11 | hδ11 | qδ11 | |
En-1 | Uniform (n-1)-honeycomb | 0[n] | δn | hδn | qδn | 1k2 • 2k1 • k21 |
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.