Loading AI tools
Uniform 7-Honeycomb From Wikipedia, the free encyclopedia
The 7-demicubic honeycomb, or demihepteractic honeycomb is a uniform space-filling tessellation (or honeycomb) in Euclidean 7-space. It is constructed as an alternation of the regular 7-cubic honeycomb.
7-demicubic honeycomb | |
---|---|
(No image) | |
Type | Uniform 7-honeycomb |
Family | Alternated hypercube honeycomb |
Schläfli symbol | h{4,3,3,3,3,3,4} h{4,3,3,3,3,31,1} ht0,7{4,3,3,3,3,3,4} |
Coxeter-Dynkin diagram | = = |
Facets | {3,3,3,3,3,4} h{4,3,3,3,3,3} |
Vertex figure | Rectified 7-orthoplex |
Coxeter group | [4,3,3,3,3,31,1] , [31,1,3,3,3,31,1] |
It is composed of two different types of facets. The 7-cubes become alternated into 7-demicubes h{4,3,3,3,3,3} and the alternated vertices create 7-orthoplex {3,3,3,3,3,4} facets.
The vertex arrangement of the 7-demicubic honeycomb is the D7 lattice.[1] The 84 vertices of the rectified 7-orthoplex vertex figure of the 7-demicubic honeycomb reflect the kissing number 84 of this lattice.[2] The best known is 126, from the E7 lattice and the 331 honeycomb.
The D+
7 packing (also called D2
7) can be constructed by the union of two D7 lattices. The D+
n packings form lattices only in even dimensions. The kissing number is 26=64 (2n-1 for n<8, 240 for n=8, and 2n(n-1) for n>8).[3]
The D*
7 lattice (also called D4
7 and C2
7) can be constructed by the union of all four 7-demicubic lattices:[4] It is also the 7-dimensional body centered cubic, the union of two 7-cube honeycombs in dual positions.
The kissing number of the D*
7 lattice is 14 (2n for n≥5) and its Voronoi tessellation is a quadritruncated 7-cubic honeycomb, , containing all with tritruncated 7-orthoplex, Voronoi cells.[5]
There are three uniform construction symmetries of this tessellation. Each symmetry can be represented by arrangements of different colors on the 128 7-demicube facets around each vertex.
Coxeter group | Schläfli symbol | Coxeter-Dynkin diagram | Vertex figure Symmetry |
Facets/verf |
---|---|---|---|---|
= [31,1,3,3,3,3,4] = [1+,4,3,3,3,3,3,4] | h{4,3,3,3,3,3,4} | = | [3,3,3,3,3,4] |
128: 7-demicube 14: 7-orthoplex |
= [31,1,3,3,31,1] = [1+,4,3,3,3,31,1] | h{4,3,3,3,3,31,1} | = | [35,1,1] |
64+64: 7-demicube 14: 7-orthoplex |
2×½ = [[(4,3,3,3,3,4,2+)]] | ht0,7{4,3,3,3,3,3,4} | 64+32+32: 7-demicube 14: 7-orthoplex |
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.