Top Qs
Timeline
Chat
Perspective

Cantellated 5-simplexes

From Wikipedia, the free encyclopedia

Cantellated 5-simplexes
Remove ads

In five-dimensional geometry, a cantellated 5-simplex is a convex uniform 5-polytope, being a cantellation of the regular 5-simplex.

More information Orthogonal projections in A5 Coxeter plane ...

There are unique 4 degrees of cantellation for the 5-simplex, including truncations.

Remove ads

Cantellated 5-simplex

Summarize
Perspective
Cantellated 5-simplex
Type Uniform 5-polytope
Schläfli symbol rr{3,3,3,3} =
Coxeter-Dynkin diagram
or
4-faces 27 6 r{3,3,3}
6 rr{3,3,3}
15 {}x{3,3}
Cells 135 30 {3,3}
30 r{3,3}
15 rr{3,3}
60 {}x{3}
Faces 290 200 {3}
90 {4}
Edges 240
Vertices 60
Vertex figure Thumb
Tetrahedral prism
Coxeter group A5 [3,3,3,3], order 720
Properties convex

The cantellated 5-simplex has 60 vertices, 240 edges, 290 faces (200 triangles and 90 squares), 135 cells (30 tetrahedra, 30 octahedra, 15 cuboctahedra and 60 triangular prisms), and 27 4-faces (6 cantellated 5-cell, 6 rectified 5-cells, and 15 tetrahedral prisms).

Alternate names

  • Cantellated hexateron
  • Small rhombated hexateron (Acronym: sarx) (Jonathan Bowers)[1]

Coordinates

The vertices of the cantellated 5-simplex can be most simply constructed on a hyperplane in 6-space as permutations of (0,0,0,1,1,2) or of (0,1,1,2,2,2). These represent positive orthant facets of the cantellated hexacross and bicantellated hexeract respectively.

Images

More information Ak Coxeter plane, A5 ...
Remove ads

Bicantellated 5-simplex

Summarize
Perspective
Bicantellated 5-simplex
Type Uniform 5-polytope
Schläfli symbol 2rr{3,3,3,3} =
Coxeter-Dynkin diagram
or
4-faces 32 12 t02{3,3,3}
20 {3}x{3}
Cells 180 30 t1{3,3}
120 {}x{3}
30 t02{3,3}
Faces 420 240 {3}
180 {4}
Edges 360
Vertices 90
Vertex figure Thumb
Coxeter group A5×2, [[3,3,3,3]], order 1440
Properties convex, isogonal

Alternate names

  • Bicantellated hexateron
  • Small birhombated dodecateron (Acronym: sibrid) (Jonathan Bowers)[2]

Coordinates

The coordinates can be made in 6-space, as 90 permutations of:

(0,0,1,1,2,2)

This construction exists as one of 64 orthant facets of the bicantellated 6-orthoplex.

Images

More information Ak Coxeter plane, A5 ...
Remove ads

Cantitruncated 5-simplex

Summarize
Perspective
cantitruncated 5-simplex
Type Uniform 5-polytope
Schläfli symbol tr{3,3,3,3} =
Coxeter-Dynkin diagram
or
4-faces 27 6 t012{3,3,3}
6 t{3,3,3}
15 {}x{3,3}
Cells 135 15 t012{3,3}
30 t{3,3}
60 {}x{3}
30 {3,3}
Faces 290 120 {3}
80 {6}
90 {}x{}
Edges 300
Vertices 120
Vertex figure Thumb
Irr. 5-cell
Coxeter group A5 [3,3,3,3], order 720
Properties convex

Alternate names

  • Cantitruncated hexateron
  • Great rhombated hexateron (Acronym: garx) (Jonathan Bowers)[3]

Coordinates

The vertices of the cantitruncated 5-simplex can be most simply constructed on a hyperplane in 6-space as permutations of (0,0,0,1,2,3) or of (0,1,2,3,3,3). These construction can be seen as facets of the cantitruncated 6-orthoplex or bicantitruncated 6-cube respectively.

Images

More information Ak Coxeter plane, A5 ...

Bicantitruncated 5-simplex

Summarize
Perspective
Bicantitruncated 5-simplex
Type Uniform 5-polytope
Schläfli symbol 2tr{3,3,3,3} =
Coxeter-Dynkin diagram
or
4-faces 32 12 tr{3,3,3}
20 {3}x{3}
Cells 180 30 t{3,3}
120 {}x{3}
30 t{3,4}
Faces 420 240 {3}
180 {4}
Edges 450
Vertices 180
Vertex figure Thumb
Coxeter group A5×2, [[3,3,3,3]], order 1440
Properties convex, isogonal

Alternate names

  • Bicantitruncated hexateron
  • Great birhombated dodecateron(Acronym: gibrid) (Jonathan Bowers)[4]

Coordinates

The coordinates can be made in 6-space, as 180 permutations of:

(0,0,1,2,3,3)

This construction exists as one of 64 orthant facets of the bicantitruncated 6-orthoplex.

Images

More information Ak Coxeter plane, A5 ...
Remove ads

The cantellated 5-simplex is one of 19 uniform 5-polytopes based on the [3,3,3,3] Coxeter group, all shown here in A5 Coxeter plane orthographic projections. (Vertices are colored by projection overlap order, red, orange, yellow, green, cyan, blue, purple having progressively more vertices)

More information A5 polytopes ...
Remove ads

Notes

References

Loading content...
Loading content...
Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads