There are many different numeral systems, that is, writing systems for expressing numbers.
By culture / time period
"A base is a natural number B whose powers (B multiplied by itself some number of times) are specially designated within a numerical system."[1]: 38 The term is not equivalent to radix, as it applies to all numerical notation systems (not just positional ones with a radix) and most systems of spoken numbers.[1] Some systems have two bases, a smaller (subbase) and a larger (base); an example is Roman numerals, which are organized by fives (V=5, L=50, D=500, the subbase) and tens (X=10, C=100, M=1,000, the base).
Name | Base | Sample | Approx. First Appearance | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Proto-cuneiform numerals | 10&60 | c. 3500–2000 BCE | ||||||||||
Indus numerals | unknown[2] | c. 3500–1900 BCE[2] | ||||||||||
Proto-Elamite numerals | 10&60 | 3100 BCE | ||||||||||
Sumerian numerals | 10&60 | 3100 BCE | ||||||||||
Egyptian numerals | 10 | 3000 BCE | ||||||||||
Babylonian numerals | 10&60 | 2000 BCE | ||||||||||
Aegean numerals | 10 | 𐄇 𐄈 𐄉 𐄊 𐄋 𐄌 𐄍 𐄎 𐄏 ( ) 𐄐 𐄑 𐄒 𐄓 𐄔 𐄕 𐄖 𐄗 𐄘 ( ) 𐄙 𐄚 𐄛 𐄜 𐄝 𐄞 𐄟 𐄠 𐄡 ( ) 𐄢 𐄣 𐄤 𐄥 𐄦 𐄧 𐄨 𐄩 𐄪 ( ) 𐄫 𐄬 𐄭 𐄮 𐄯 𐄰 𐄱 𐄲 𐄳 ( ) | 1500 BCE | |||||||||
Chinese numerals Japanese numerals Korean numerals (Sino-Korean) Vietnamese numerals (Sino-Vietnamese) | 10 |
零一二三四五六七八九十百千萬億 (Default, Traditional Chinese) |
1300 BCE | |||||||||
Roman numerals | 5&10 | I V X L C D M | 1000 BCE[1] | |||||||||
Hebrew numerals | 10 | א ב ג ד ה ו ז ח ט י כ ל מ נ ס ע פ צ ק ר ש ת ך ם ן ף ץ | 800 BCE | |||||||||
Indian numerals | 10 |
Bengali ০ ১ ২ ৩ ৪ ৫ ৬ ৭ ৮ ৯ Devanagari ० १ २ ३ ४ ५ ६ ७ ८ ९ Gujarati ૦ ૧ ૨ ૩ ૪ ૫ ૬ ૭ ૮ ૯ Kannada ೦ ೧ ೨ ೩ ೪ ೫ ೬ ೭ ೮ ೯ Malayalam ൦ ൧ ൨ ൩ ൪ ൫ ൬ ൭ ൮ ൯ Odia ୦ ୧ ୨ ୩ ୪ ୫ ୬ ୭ ୮ ୯ Punjabi ੦ ੧ ੨ ੩ ੪ ੫ ੬ ੭ ੮ ੯ Tamil ௦ ௧ ௨ ௩ ௪ ௫ ௬ ௭ ௮ ௯ Telugu ౦ ౧ ౨ ౩ ౪ ౫ ౬ ౭ ౮ ౯ Tibetan ༠ ༡ ༢ ༣ ༤ ༥ ༦ ༧ ༨ ༩ Urdu ۰ ۱ ۲ ۳ ۴ ۵ ۶ ۷ ۸ ۹ |
750–500 BCE | |||||||||
Greek numerals | 10 | ō α β γ δ ε ϝ ζ η θ ι ο Αʹ Βʹ Γʹ Δʹ Εʹ Ϛʹ Ζʹ Ηʹ Θʹ | <400 BCE | |||||||||
Kharosthi numerals | 4&10 | 𐩇 𐩆 𐩅 𐩄 𐩃 𐩂 𐩁 𐩀 | <400–250 BCE[3] | |||||||||
Phoenician numerals | 10 | 𐤙 𐤘 𐤗 𐤛𐤛𐤛 𐤛𐤛𐤚 𐤛𐤛𐤖 𐤛𐤛 𐤛𐤚 𐤛𐤖 𐤛 𐤚 𐤖 [4] | <250 BCE[5] | |||||||||
Chinese rod numerals | 10 | 𝍠 𝍡 𝍢 𝍣 𝍤 𝍥 𝍦 𝍧 𝍨 𝍩 | 1st Century | |||||||||
Coptic numerals | 10 | Ⲁ Ⲃ Ⲅ Ⲇ Ⲉ Ⲋ Ⲍ Ⲏ Ⲑ | 2nd Century | |||||||||
Ge'ez numerals | 10 | ፩ ፪ ፫ ፬ ፭ ፮ ፯ ፰ ፱ ፲ ፳ ፴ ፵ ፶ ፷ ፸ ፹ ፺ ፻ ፼ [6] | 3rd–4th Century 15th Century (Modern Style)[7]: 135–136 | |||||||||
Armenian numerals | 10 | Ա Բ Գ Դ Ե Զ Է Ը Թ Ժ | Early 5th Century | |||||||||
Khmer numerals | 10 | ០ ១ ២ ៣ ៤ ៥ ៦ ៧ ៨ ៩ | Early 7th Century | |||||||||
Thai numerals | 10 | ๐ ๑ ๒ ๓ ๔ ๕ ๖ ๗ ๘ ๙ | 7th Century[8] | |||||||||
Abjad numerals | 10 | غ ظ ض ذ خ ث ت ش ر ق ص ف ع س ن م ل ك ي ط ح ز و هـ د ج ب ا | <8th Century | |||||||||
Chinese numerals (financial) | 10 | 零壹貳參肆伍陸柒捌玖拾佰仟萬億 (T. Chinese) 零壹贰叁肆伍陆柒捌玖拾佰仟萬億 (S. Chinese) | late 7th/early 8th Century[9] | |||||||||
Eastern Arabic numerals | 10 | ٩ ٨ ٧ ٦ ٥ ٤ ٣ ٢ ١ ٠ | 8th Century | |||||||||
Vietnamese numerals (Chữ Nôm) | 10 | 𠬠 𠄩 𠀧 𦊚 𠄼 𦒹 𦉱 𠔭 𠃩 | <9th Century | |||||||||
Western Arabic numerals | 10 | 0 1 2 3 4 5 6 7 8 9 | 9th Century | |||||||||
Glagolitic numerals | 10 | Ⰰ Ⰱ Ⰲ Ⰳ Ⰴ Ⰵ Ⰶ Ⰷ Ⰸ ... | 9th Century | |||||||||
Cyrillic numerals | 10 | а в г д е ѕ з и ѳ і ... | 10th Century | |||||||||
Rumi numerals | 10 | 10th Century | ||||||||||
Burmese numerals | 10 | ၀ ၁ ၂ ၃ ၄ ၅ ၆ ၇ ၈ ၉ | 11th Century[10] | |||||||||
Tangut numerals | 10 | 𘈩 𗍫 𘕕 𗥃 𗏁 𗤁 𗒹 𘉋 𗢭 𗰗 | 11th Century (1036) | |||||||||
Cistercian numerals | 10 | 13th Century | ||||||||||
Maya numerals | 5&20 | <15th Century | ||||||||||
Muisca numerals | 20 | <15th Century | ||||||||||
Korean numerals (Hangul) | 10 | 영 일 이 삼 사 오 육 칠 팔 구 | 15th Century (1443) | |||||||||
Aztec numerals | 20 | 16th Century | ||||||||||
Sinhala numerals | 10 | ෦ ෧ ෨ ෩ ෪ ෫ ෬ ෭ ෮ ෯ 𑇡 𑇢 𑇣 𑇤 𑇥 𑇦 𑇧 𑇨 𑇩 𑇪 𑇫 𑇬 𑇭 𑇮 𑇯 𑇰 𑇱 𑇲 𑇳 𑇴 | <18th Century | |||||||||
Pentadic runes | 10 | 19th Century | ||||||||||
Cherokee numerals | 10 | 19th Century (1820s) | ||||||||||
Vai numerals | 10 | ꘠ ꘡ ꘢ ꘣ ꘤ ꘥ ꘦ ꘧ ꘨ ꘩ [11] | 19th Century (1832)[12] | |||||||||
Bamum numerals | 10 | ꛯ ꛦ ꛧ ꛨ ꛩ ꛪ ꛫ ꛬ ꛭ ꛮ [13] | 19th Century (1896)[12] | |||||||||
Mende Kikakui numerals | 10 | 𞣏 𞣎 𞣍 𞣌 𞣋 𞣊 𞣉 𞣈 𞣇 [14] | 20th Century (1917)[15] | |||||||||
Osmanya numerals | 10 | 𐒠 𐒡 𐒢 𐒣 𐒤 𐒥 𐒦 𐒧 𐒨 𐒩 | 20th Century (1920s) | |||||||||
Medefaidrin numerals | 20 | 𖺀 𖺁/𖺔 𖺂/𖺕 𖺃/𖺖 𖺄 𖺅 𖺆 𖺇 𖺈 𖺉 𖺊 𖺋 𖺌 𖺍 𖺎 𖺏 𖺐 𖺑 𖺒 𖺓 [16] | 20th Century (1930s)[17] | |||||||||
N'Ko numerals | 10 | ߉ ߈ ߇ ߆ ߅ ߄ ߃ ߂ ߁ ߀ [18] | 20th Century (1949)[19] | |||||||||
Hmong numerals | 10 | 𖭐 𖭑 𖭒 𖭓 𖭔 𖭕 𖭖 𖭗 𖭘 𖭑𖭐 | 20th Century (1959) | |||||||||
Garay numerals | 10 | [20] | 20th Century (1961)[21] | |||||||||
Adlam numerals | 10 | 𞥙 𞥘 𞥗 𞥖 𞥕 𞥔 𞥓 𞥒 𞥑 𞥐 [22] | 20th Century (1989)[23] | |||||||||
Kaktovik numerals | 5&20 | 𝋀 𝋁 𝋂 𝋃 𝋄 𝋅 𝋆 𝋇 𝋈 𝋉 𝋊 𝋋 𝋌 𝋍 𝋎 𝋏 𝋐 𝋑 𝋒 𝋓 [24] | 20th Century (1994)[25] | |||||||||
Sundanese numerals | 10 | ᮰ ᮱ ᮲ ᮳ ᮴ ᮵ ᮶ ᮷ ᮸ ᮹ | 20th Century (1996)[26] |
By type of notation
Numeral systems are classified here as to whether they use positional notation (also known as place-value notation), and further categorized by radix or base.
Standard positional numeral systems
The common names are derived somewhat arbitrarily from a mix of Latin and Greek, in some cases including roots from both languages within a single name.[27] There have been some proposals for standardisation.[28]
Base | Name | Usage |
---|---|---|
2 | Binary | Digital computing, imperial and customary volume (bushel-kenning-peck-gallon-pottle-quart-pint-cup-gill-jack-fluid ounce-tablespoon) |
3 | Ternary, trinary[29] | Cantor set (all points in [0,1] that can be represented in ternary with no 1s); counting Tasbih in Islam; hand-foot-yard and teaspoon-tablespoon-shot measurement systems; most economical integer base |
4 | Quaternary | Chumashan languages and Kharosthi numerals |
5 | Quinary | Gumatj, Ateso, Nunggubuyu, Kuurn Kopan Noot, and Saraveca languages; common count grouping e.g. tally marks |
6 | Senary, seximal | Diceware, Ndom, Kanum, and Proto-Uralic language (suspected) |
7 | Septimal, Septenary[30] | Weeks timekeeping, Western music letter notation |
8 | Octal | Charles XII of Sweden, Unix-like permissions, Squawk codes, DEC PDP-11, Yuki, Pame, compact notation for binary numbers, Xiantian (I Ching, China) |
9 | Nonary, nonal | Compact notation for ternary |
10 | Decimal, denary | Most widely used by contemporary societies[31][32][33] |
11 | Undecimal, unodecimal, undenary | A base-11 number system was attributed to the Māori (New Zealand) in the 19th century[34] and the Pangwa (Tanzania) in the 20th century.[35] Briefly proposed during the French Revolution to settle a dispute between those proposing a shift to duodecimal and those who were content with decimal. Used as a check digit in ISBN for 10-digit ISBNs. Applications in computer science and technology.[36][37][38] Featured in popular fiction. |
12 | Duodecimal, dozenal | Languages in the Nigerian Middle Belt Janji, Gbiri-Niragu, Piti, and the Nimbia dialect of Gwandara; Chepang language of Nepal, and the Mahl dialect of Maldivian; dozen-gross-great gross counting; 12-hour clock and months timekeeping; years of Chinese zodiac; foot and inch; Roman fractions; penny and shilling |
13 | Tredecimal, tridecimal[39][40] | Conway base 13 function. |
14 | Quattuordecimal, quadrodecimal[39][40] | Programming for the HP 9100A/B calculator[41] and image processing applications;[42] pound and stone. |
15 | Quindecimal, pentadecimal[43][40] | Telephony routing over IP, and the Huli language. |
16 | Hexadecimal, sexadecimal, sedecimal | Compact notation for binary data; tonal system; ounce and pound. |
17 | Septendecimal, heptadecimal[43][40] | |
18 | Octodecimal[43][40] | A base in which 7n is palindromic for n = 3, 4, 6, 9. |
19 | Undevicesimal, nonadecimal[43][40] | |
20 | Vigesimal | Basque, Celtic, Muisca, Inuit, Yoruba, Tlingit, and Dzongkha numerals; Santali, and Ainu languages; shilling and pound |
5&20 | Quinary-vigesimal[44][45][46] | Greenlandic, Iñupiaq, Kaktovik, Maya, Nunivak Cupʼig, and Yupʼik numerals – "wide-spread... in the whole territory from Alaska along the Pacific Coast to the Orinoco and the Amazon"[44] |
21 | The smallest base in which all fractions 1/2 to 1/18 have periods of 4 or shorter. | |
23 | Kalam language,[47] Kobon language[citation needed] | |
24 | Quadravigesimal[48] | 24-hour clock timekeeping; Greek alphabet; Kaugel language. |
25 | Sometimes used as compact notation for quinary. | |
26 | Hexavigesimal[48][49] | Sometimes used for encryption or ciphering,[50] using all letters in the English alphabet |
27 | Septemvigesimal | Telefol,[47] Oksapmin,[51] Wambon,[52] and Hewa[53] languages. Mapping the nonzero digits to the alphabet and zero to the space is occasionally used to provide checksums for alphabetic data such as personal names,[54] to provide a concise encoding of alphabetic strings,[55] or as the basis for a form of gematria.[56] Compact notation for ternary. |
28 | Months timekeeping. | |
30 | Trigesimal | The Natural Area Code, this is the smallest base such that all of 1/2 to 1/6 terminate, a number n is a regular number if and only if 1/n terminates in base 30. |
32 | Duotrigesimal | Found in the Ngiti language. |
33 | Use of letters (except I, O, Q) with digits in vehicle registration plates of Hong Kong. | |
34 | Using all numbers and all letters except I and O; the smallest base where 1/2 terminates and all of 1/2 to 1/18 have periods of 4 or shorter. | |
35 | Covers the ten decimal digits and all letters of the English alphabet, apart from not distinguishing 0 from O. | |
36 | Hexatrigesimal[57][58] | Covers the ten decimal digits and all letters of the English alphabet. |
37 | Covers the ten decimal digits and all letters of the Spanish alphabet. | |
38 | Covers the duodecimal digits and all letters of the English alphabet. | |
40 | Quadragesimal | DEC RADIX 50/MOD40 encoding used to compactly represent file names and other symbols on Digital Equipment Corporation computers. The character set is a subset of ASCII consisting of space, upper case letters, the punctuation marks "$", ".", and "%", and the numerals. |
42 | Largest base for which all minimal primes are known. | |
47 | Smallest base for which no generalized Wieferich primes are known. | |
49 | Compact notation for septenary. | |
50 | Quinquagesimal | SQUOZE encoding used to compactly represent file names and other symbols on some IBM computers. Encoding using all Gurmukhi characters plus the Gurmukhi digits. |
52 | Covers the digits and letters assigned to base 62 apart from the basic vowel letters;[59] similar to base 26 but distinguishing upper- and lower-case letters. | |
56 | A variant of base 58.[clarification needed][60] | |
57 | Covers base 62 apart from I, O, l, U, and u,[61] or I, 1, l, 0, and O.[62] | |
58 | Covers base 62 apart from 0 (zero), I (capital i), O (capital o) and l (lower case L).[63] | |
60 | Sexagesimal | Babylonian numerals and Sumerian; degrees-minutes-seconds and hours-minutes-seconds measurement systems; Ekari; covers base 62 apart from I, O, and l, but including _(underscore).[64] |
62 | Can be notated with the digits 0–9 and the cased letters A–Z and a–z of the English alphabet. | |
64 | Tetrasexagesimal | I Ching in China. This system is conveniently coded into ASCII by using the 26 letters of the Latin alphabet in both upper and lower case (52 total) plus 10 numerals (62 total) and then adding two special characters (+ and /). |
72 | The smallest base greater than binary such that no three-digit narcissistic number exists. | |
80 | Octogesimal | Used as a sub-base in Supyire. |
85 | Ascii85 encoding. This is the minimum number of characters needed to encode a 32 bit number into 5 printable characters in a process similar to MIME-64 encoding, since 855 is only slightly bigger than 232. Such method is 6.7% more efficient than MIME-64 which encodes a 24 bit number into 4 printable characters. | |
89 | Largest base for which all left-truncatable primes are known. | |
90 | Nonagesimal | Related to Goormaghtigh conjecture for the generalized repunit numbers (111 in base 90 = 1111111111111 in base 2). |
95 | Number of printable ASCII characters.[65] | |
96 | Total number of character codes in the (six) ASCII sticks containing printable characters. | |
97 | Smallest base which is not perfect odd power (where generalized Wagstaff numbers can be factored algebraically) for which no generalized Wagstaff primes are known. | |
100 | Centesimal | As 100=102, these are two decimal digits. |
121 | Number expressible with two undecimal digits. | |
125 | Number expressible with three quinary digits. | |
128 | Using as 128=27.[clarification needed] | |
144 | Number expressible with two duodecimal digits. | |
169 | Number expressible with two tridecimal digits. | |
185 | Smallest base which is not a perfect power (where generalized repunits can be factored algebraically) for which no generalized repunit primes are known. | |
196 | Number expressible with two tetradecimal digits. | |
210 | Smallest base such that all fractions 1/2 to 1/10 terminate. | |
225 | Number expressible with two pentadecimal digits. | |
256 | Number expressible with eight binary digits. | |
360 | Degrees of angle. |
Non-standard positional numeral systems
Bijective numeration
Base | Name | Usage |
---|---|---|
1 | Unary (Bijective base‑1) | Tally marks, Counting. Unary numbering is used as part of some data compression algorithms such as Golomb coding. It also forms the basis for the Peano axioms for formalizing arithmetic within mathematical logic. A form of unary notation called Church encoding is used to represent numbers within lambda calculus.
Some email spam filters tag messages with a number of asterisks in an e-mail header such as X-Spam-Bar or X-SPAM-LEVEL. The larger the number, the more likely the email is considered spam. |
10 | Bijective base-10 | To avoid zero |
26 | Bijective base-26 | Spreadsheet column numeration. Also used by John Nash as part of his obsession with numerology and the uncovering of "hidden" messages.[66] |
Signed-digit representation
Base | Name | Usage |
---|---|---|
2 | Balanced binary (Non-adjacent form) | |
3 | Balanced ternary | Ternary computers |
4 | Balanced quaternary | |
5 | Balanced quinary | |
6 | Balanced senary | |
7 | Balanced septenary | |
8 | Balanced octal | |
9 | Balanced nonary | |
10 | Balanced decimal | John Colson Augustin Cauchy |
11 | Balanced undecimal | |
12 | Balanced duodecimal |
Complex bases
Base | Name | Usage |
---|---|---|
2i | Quater-imaginary base | related to base −4 and base 16 |
Base | related to base −2 and base 4 | |
Base | related to base 2 | |
Base | related to base 8 | |
Base | related to base 2 | |
−1 ± i | Twindragon base | Twindragon fractal shape, related to base −4 and base 16 |
1 ± i | Negatwindragon base | related to base −4 and base 16 |
Non-integer bases
Base | Name | Usage |
---|---|---|
Base | a rational non-integer base | |
Base | related to duodecimal | |
Base | related to decimal | |
Base | related to base 2 | |
Base | related to base 3 | |
Base | ||
Base | ||
Base | usage in 12-tone equal temperament musical system | |
Base | ||
Base | a negative rational non-integer base | |
Base | a negative non-integer base, related to base 2 | |
Base | related to decimal | |
Base | related to duodecimal | |
φ | Golden ratio base | early Beta encoder[67] |
ρ | Plastic number base | |
ψ | Supergolden ratio base | |
Silver ratio base | ||
e | Base | best radix economy [citation needed] |
π | Base | |
eπ | Base | |
Base |
n-adic number
Base | Name | Usage |
---|---|---|
2 | Dyadic number | |
3 | Triadic number | |
4 | Tetradic number | the same as dyadic number |
5 | Pentadic number | |
6 | Hexadic number | not a field |
7 | Heptadic number | |
8 | Octadic number | the same as dyadic number |
9 | Enneadic number | the same as triadic number |
10 | Decadic number | not a field |
11 | Hendecadic number | |
12 | Dodecadic number | not a field |
Mixed radix
- Factorial number system {1, 2, 3, 4, 5, 6, ...}
- Even double factorial number system {2, 4, 6, 8, 10, 12, ...}
- Odd double factorial number system {1, 3, 5, 7, 9, 11, ...}
- Primorial number system {2, 3, 5, 7, 11, 13, ...}
- Fibonorial number system {1, 2, 3, 5, 8, 13, ...}
- {60, 60, 24, 7} in timekeeping
- {60, 60, 24, 30 (or 31 or 28 or 29), 12, 10, 10, 10} in timekeeping
- (12, 20) traditional English monetary system (£sd)
- (20, 18, 13) Maya timekeeping
Other
- Quote notation
- Redundant binary representation
- Hereditary base-n notation
- Asymmetric numeral systems optimized for non-uniform probability distribution of symbols
- Combinatorial number system
Non-positional notation
All known numeral systems developed before the Babylonian numerals are non-positional,[68] as are many developed later, such as the Roman numerals. The French Cistercian monks created their own numeral system.
See also
- History of ancient numeral systems – Symbols representing numbers
- History of the Hindu–Arabic numeral system
- List of numeral system topics
- Numeral prefix – Prefix derived from numerals or other numbers
- Radix – Number of digits of a numeral system
- Radix economy – Number of digits needed to express a number in a particular base
- Timeline of numerals and arithmetic
References
Wikiwand in your browser!
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.