Radix

Number of digits of a numeral system From Wikipedia, the free encyclopedia

In a positional numeral system, the radix (pl.: radices) or base is the number of unique digits, including the digit zero, used to represent numbers. For example, for the decimal system (the most common system in use today) the radix is ten, because it uses the ten digits from 0 through 9.

In any standard positional numeral system, a number is conventionally written as (x)y with x as the string of digits and y as its base. For base ten, the subscript is usually assumed and omitted (together with the enclosing parentheses), as it is the most common way to express value. For example, (100)10 is equivalent to 100 (the decimal system is implied in the latter) and represents the number one hundred, while (100)2 (in the binary system with base 2) represents the number four.[1]

Etymology

Radix is a Latin word for "root". Root can be considered a synonym for base, in the arithmetical sense.

In numeral systems

Summarize
Perspective

Generally, in a system with radix b (b > 1), a string of digits d1 ... dn denotes the number d1bn−1 + d2bn−2 + … + dnb0, where 0 ≤ di < b.[1] In contrast to decimal, or radix 10, which has a ones' place, tens' place, hundreds' place, and so on, radix b would have a ones' place, then a b1s' place, a b2s' place, etc.[2]

For example, if b = 12, a string of digits such as 59A (where the letter "A" represents the value of ten) would represent the value 5 × 122 + 9 × 121 + 10 × 120 = 838 in base 10.

Commonly used numeral systems include:

More information Base/radix, Name ...
Base/radix Name Description
2 Binary numeral system Used internally by nearly all computers. The two digits are "0" and "1", expressed from switches displaying OFF and ON, respectively. Used in most electric counters.
8 Octal system Used occasionally in computing. The eight digits are "0"–"7" and represent 3 bits (23).
10 Decimal system Used by humans in the wide majority of cultures. Its ten digits are "0"–"9". Used in most mechanical counters.
12 Duodecimal (dozenal) system Sometimes advocated due to divisibility by 2, 3, 4, and 6. It was traditionally used as part of quantities expressed in dozens and grosses.
16 Hexadecimal system Often used in computing as a more compact representation of binary (1 hex digit per 4 bits). The sixteen digits are "0"–"9" followed by "A"–"F" or "a"–"f".
20 Vigesimal system Traditional numeral system in several cultures, still used by some for counting. Historically also known as the score system in English, now most famous in the phrase "four score and seven years ago" in the Gettysburg Address.
36 Base36 Base36 is a binary-to-text encoding scheme that represents binary data in an ASCII string format by translating it into a radix-36 representation. The choice of 36 is convenient in that the digits can be represented using the Arabic numerals 0–9 and the Latin letters A–Z (the ISO basic Latin alphabet). Each base36 digit needs less than 6 bits of information to be represented.
60 Sexagesimal system Originally used in modified form in ancient Sumer and passed to the Babylonians.[3] Used today as the basis of modern circular coordinate system (degrees, minutes, and seconds) and time measuring (minutes, and seconds) by analogy to the rotation of the Earth.
Close

The octal and hexadecimal systems are often used in computing because of their ease as shorthand for binary. Every hexadecimal digit corresponds to a sequence of four binary digits, since sixteen is the fourth power of two; for example, hexadecimal 7816 is binary 11110002. Similarly, every octal digit corresponds to a unique sequence of three binary digits, since eight is the cube of two.

This representation is unique. Let b be a positive integer greater than 1. Then every positive integer a can be expressed uniquely in the form

where m is a nonnegative integer and the r's are integers such that

0 < rm < b and 0 ≤ ri < b for i = 0, 1, ... , m − 1.[4]

Radices are usually natural numbers. However, other positional systems are possible, for example, golden ratio base (whose radix is a non-integer algebraic number),[5] and negative base (whose radix is negative).[6] A negative base allows the representation of negative numbers without the use of a minus sign. For example, let b = −10. Then a string of digits such as 19 denotes the (decimal) number 1 × (−10)1 + 9 × (−10)0 = −1.

Table of bases

Summarize
Perspective

Different bases are especially used in connection with computers. The commonly used bases are 10 (decimal), 2 (binary), 8 (octal), and 16 (hexadecimal). A byte with 8 bits can represent values from 0 to 255, often expressed with leading zeros in base 2, 8 or 16 to give the same length.[7]

The first row in the tables is the base written in decimal.

0–15
102816
0 0000000000000
1 0000000100101
2 0000001000202
3 0000001100303
4 0000010000404
5 0000010100505
6 0000011000606
7 0000011100707
8 0000100001008
9 0000100101109
10 000010100120a
11 000010110130b
12 000011000140c
13 000011010150d
14 000011100160e
15 000011110170f
16–31
102816
16 0001000002010
17 0001000102111
18 0001001002212
19 0001001102313
20 0001010002414
21 0001010102515
22 0001011002616
23 0001011102717
24 0001100003018
25 0001100103119
26 000110100321a
27 000110110331b
28 000111000341c
29 000111010351d
30 000111100361e
31 000111110371f
32–47
102816
32 0010000004020
33 0010000104121
34 0010001004222
35 0010001104323
36 0010010004424
37 0010010104525
38 0010011004626
39 0010011104727
40 0010100005028
41 0010100105129
42 001010100522a
43 001010110532b
44 001011000542c
45 001011010552d
46 001011100562e
47 001011110572f
48–63
102816
48 0011000006030
49 0011000106131
50 0011001006232
51 0011001106333
52 0011010006434
53 0011010106535
54 0011011006636
55 0011011106737
56 0011100007038
57 0011100107139
58 001110100723a
59 001110110733b
60 001111000743c
61 001111010753d
62 001111100763e
63 001111110773f
64–79
102816
64 0100000010040
65 0100000110141
66 0100001010242
67 0100001110343
68 0100010010444
69 0100010110545
70 0100011010646
71 0100011110747
72 0100100011048
73 0100100111149
74 010010101124a
75 010010111134b
76 010011001144c
77 010011011154d
78 010011101164e
79 010011111174f
80–95
102816
80 0101000012050
81 0101000112151
82 0101001012252
83 0101001112353
84 0101010012454
85 0101010112555
86 0101011012656
87 0101011112757
88 0101100013058
89 0101100113159
90 010110101325a
91 010110111335b
92 010111001345c
93 010111011355d
94 010111101365e
95 010111111375f
96–111
102816
96 0110000014060
97 0110000114161
98 0110001014262
99 0110001114363
100 0110010014464
101 0110010114565
102 0110011014666
103 0110011114767
104 0110100015068
105 0110100115169
106 011010101526a
107 011010111536b
108 011011001546c
109 011011011556d
110 011011101566e
111 011011111576f
112–127
102816
112 0111000016070
113 0111000116171
114 0111001016272
115 0111001116373
116 0111010016474
117 0111010116575
118 0111011016676
119 0111011116777
120 0111100017078
121 0111100117179
122 011110101727a
123 011110111737b
124 011111001747c
125 011111011757d
126 011111101767e
127 011111111777f
128–143
102816
128 1000000020080
129 1000000120181
130 1000001020282
131 1000001120383
132 1000010020484
133 1000010120585
134 1000011020686
135 1000011120787
136 1000100021088
137 1000100121189
138 100010102128a
139 100010112138b
140 100011002148c
141 100011012158d
142 100011102168e
143 100011112178f
144–159
102816
144 1001000022090
145 1001000122191
146 1001001022292
147 1001001122393
148 1001010022494
149 1001010122595
150 1001011022696
151 1001011122797
152 1001100023098
153 1001100123199
154 100110102329a
155 100110112339b
156 100111002349c
157 100111012359d
158 100111102369e
159 100111112379f
160–175
102816
160 10100000240a0
161 10100001241a1
162 10100010242a2
163 10100011243a3
164 10100100244a4
165 10100101245a5
166 10100110246a6
167 10100111247a7
168 10101000250a8
169 10101001251a9
170 10101010252aa
171 10101011253ab
172 10101100254ac
173 10101101255ad
174 10101110256ae
175 10101111257af
176–191
102816
176 10110000260b0
177 10110001261b1
178 10110010262b2
179 10110011263b3
180 10110100264b4
181 10110101265b5
182 10110110266b6
183 10110111267b7
184 10111000270b8
185 10111001271b9
186 10111010272ba
187 10111011273bb
188 10111100274bc
189 10111101275bd
190 10111110276be
191 10111111277bf
192–207
102816
192 11000000300c0
193 11000001301c1
194 11000010302c2
195 11000011303c3
196 11000100304c4
197 11000101305c5
198 11000110306c6
199 11000111307c7
200 11001000310c8
201 11001001311c9
202 11001010312ca
203 11001011313cb
204 11001100314cc
205 11001101315cd
206 11001110316ce
207 11001111317cf
208–223
102816
208 11010000320d0
209 11010001321d1
210 11010010322d2
211 11010011323d3
212 11010100324d4
213 11010101325d5
214 11010110326d6
215 11010111327d7
216 11011000330d8
217 11011001331d9
218 11011010332da
219 11011011333db
220 11011100334dc
221 11011101335dd
222 11011110336de
223 11011111337df
224–239
102816
224 11100000340e0
225 11100001341e1
226 11100010342e2
227 11100011343e3
228 11100100344e4
229 11100101345e5
230 11100110346e6
231 11100111347e7
232 11101000350e8
233 11101001351e9
234 11101010352ea
235 11101011353eb
236 11101100354ec
237 11101101355ed
238 11101110356ee
239 11101111357ef
240–255
102816
240 11110000360f0
241 11110001361f1
242 11110010362f2
243 11110011363f3
244 11110100364f4
245 11110101365f5
246 11110110366f6
247 11110111367f7
248 11111000370f8
249 11111001371f9
250 11111010372fa
251 11111011373fb
252 11111100374fc
253 11111101375fd
254 11111110376fe
255 11111111377ff

See also

Notes

References

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.