Loading AI tools
Convex optimization problem From Wikipedia, the free encyclopedia
A second-order cone program (SOCP) is a convex optimization problem of the form
This article may be too technical for most readers to understand. (October 2011) |
where the problem parameters are , and . is the optimization variable. is the Euclidean norm and indicates transpose.[1] The "second-order cone" in SOCP arises from the constraints, which are equivalent to requiring the affine function to lie in the second-order cone in .[1]
SOCPs can be solved by interior point methods[2] and in general, can be solved more efficiently than semidefinite programming (SDP) problems.[3] Some engineering applications of SOCP include filter design, antenna array weight design, truss design, and grasping force optimization in robotics.[4] Applications in quantitative finance include portfolio optimization; some market impact constraints, because they are not linear, cannot be solved by quadratic programming but can be formulated as SOCP problems.[5][6][7]
The standard or unit second-order cone of dimension is defined as
.
The second-order cone is also known by quadratic cone or ice-cream cone or Lorentz cone. The standard second-order cone in is .
The set of points satisfying a second-order cone constraint is the inverse image of the unit second-order cone under an affine mapping:
and hence is convex.
The second-order cone can be embedded in the cone of the positive semidefinite matrices since
i.e., a second-order cone constraint is equivalent to a linear matrix inequality (Here means is semidefinite matrix). Similarly, we also have,
.
When for , the SOCP reduces to a linear program. When for , the SOCP is equivalent to a convex quadratically constrained linear program.
Convex quadratically constrained quadratic programs can also be formulated as SOCPs by reformulating the objective function as a constraint.[4] Semidefinite programming subsumes SOCPs as the SOCP constraints can be written as linear matrix inequalities (LMI) and can be reformulated as an instance of semidefinite program.[4] The converse, however, is not valid: there are positive semidefinite cones that do not admit any second-order cone representation.[3] In fact, while any closed convex semialgebraic set in the plane can be written as a feasible region of a SOCP,[8] it is known that there exist convex semialgebraic sets that are not representable by SDPs, that is, there exist convex semialgebraic sets that can not be written as a feasible region of a SDP.[9]
Consider a convex quadratic constraint of the form
This is equivalent to the SOCP constraint
Consider a stochastic linear program in inequality form
where the parameters are independent Gaussian random vectors with mean and covariance and . This problem can be expressed as the SOCP
where is the inverse normal cumulative distribution function.[1]
We refer to second-order cone programs as deterministic second-order cone programs since data defining them are deterministic. Stochastic second-order cone programs are a class of optimization problems that are defined to handle uncertainty in data defining deterministic second-order cone programs.[10]
Other modeling examples are available at the MOSEK modeling cookbook.[11]
Name | License | Brief info |
---|---|---|
AMPL | commercial | An algebraic modeling language with SOCP support |
Artelys Knitro | commercial | |
Clarabel | open source | Native Julia and Rust SOCP solver. Can solve convex problems with arbitrary precision types. |
CPLEX | commercial | |
CVXPY | open source | Python modeling language with support for SOCP. Supports open source and commercial solvers. |
CVXOPT | open source | Convex solver with support for SOCP |
ECOS | open source | SOCP solver optimized for embedded applications |
FICO Xpress | commercial | |
Gurobi Optimizer | commercial | |
MATLAB | commercial | The coneprog function solves SOCP problems[12] using an interior-point algorithm[13] |
MOSEK | commercial | parallel interior-point algorithm |
NAG Numerical Library | commercial | General purpose numerical library with SOCP solver |
SCS | open source | SCS (Splitting Conic Solver) is a numerical optimization package for solving large-scale convex quadratic cone problems. |
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.