Second-order cone programming

Convex optimization problem From Wikipedia, the free encyclopedia

A second-order cone program (SOCP) is a convex optimization problem of the form

minimize
subject to

where the problem parameters are , and . is the optimization variable. is the Euclidean norm and indicates transpose.[1] The "second-order cone" in SOCP arises from the constraints, which are equivalent to requiring the affine function to lie in the second-order cone in .[1]

SOCPs can be solved by interior point methods[2] and in general, can be solved more efficiently than semidefinite programming (SDP) problems.[3] Some engineering applications of SOCP include filter design, antenna array weight design, truss design, and grasping force optimization in robotics.[4] Applications in quantitative finance include portfolio optimization; some market impact constraints, because they are not linear, cannot be solved by quadratic programming but can be formulated as SOCP problems.[5][6][7]

Second-order cone

Summarize
Perspective

The standard or unit second-order cone of dimension is defined as

.

The second-order cone is also known by quadratic cone or ice-cream cone or Lorentz cone. The standard second-order cone in is .

The set of points satisfying a second-order cone constraint is the inverse image of the unit second-order cone under an affine mapping:

and hence is convex.

The second-order cone can be embedded in the cone of the positive semidefinite matrices since

i.e., a second-order cone constraint is equivalent to a linear matrix inequality (Here means is semidefinite matrix). Similarly, we also have,

.

Relation with other optimization problems

Summarize
Perspective
Thumb
A hierarchy of convex optimization problems. (LP: linear program, QP: quadratic program, SOCP second-order cone program, SDP: semidefinite program, CP: cone program.)

When for , the SOCP reduces to a linear program. When for , the SOCP is equivalent to a convex quadratically constrained linear program.

Convex quadratically constrained quadratic programs can also be formulated as SOCPs by reformulating the objective function as a constraint.[4] Semidefinite programming subsumes SOCPs as the SOCP constraints can be written as linear matrix inequalities (LMI) and can be reformulated as an instance of semidefinite program.[4] The converse, however, is not valid: there are positive semidefinite cones that do not admit any second-order cone representation.[3]

Any closed convex semialgebraic set in the plane can be written as a feasible region of a SOCP,[8]. However, it is known that there exist convex semialgebraic sets of higher dimension that are not representable by SDPs; that is, there exist convex semialgebraic sets that can not be written as the feasible region of a SDP (nor, a fortiori, as the feasible region of a SOCP).[9]

Examples

Summarize
Perspective

Quadratic constraint

Consider a convex quadratic constraint of the form

This is equivalent to the SOCP constraint

Stochastic linear programming

Consider a stochastic linear program in inequality form

minimize
subject to

where the parameters are independent Gaussian random vectors with mean and covariance and . This problem can be expressed as the SOCP

minimize
subject to

where is the inverse normal cumulative distribution function.[1]

Stochastic second-order cone programming

We refer to second-order cone programs as deterministic second-order cone programs since data defining them are deterministic. Stochastic second-order cone programs are a class of optimization problems that are defined to handle uncertainty in data defining deterministic second-order cone programs.[10]

Other examples

Other modeling examples are available at the MOSEK modeling cookbook.[11]

Solvers and scripting (programming) languages

More information Name, License ...
Name License Brief info
ALGLIBfree/commercialA dual-licensed C++/C#/Java/Python numerical analysis library with parallel SOCP solver.
AMPLcommercialAn algebraic modeling language with SOCP support
Artelys Knitrocommercial
CPLEXcommercial
FICO Xpresscommercial
Gurobi Optimizercommercial
MATLABcommercialThe coneprog function solves SOCP problems[12] using an interior-point algorithm[13]
MOSEKcommercialparallel interior-point algorithm
NAG Numerical LibrarycommercialGeneral purpose numerical library with SOCP solver
Close

See also

  • Power cones are generalizations of quadratic cones to powers other than 2.[14]

References

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.