Loading AI tools
Mathematical convex optimization From Wikipedia, the free encyclopedia
In convex optimization, a linear matrix inequality (LMI) is an expression of the form
where
This linear matrix inequality specifies a convex constraint on .
There are efficient numerical methods to determine whether an LMI is feasible (e.g., whether there exists a vector y such that LMI(y) ≥ 0), or to solve a convex optimization problem with LMI constraints. Many optimization problems in control theory, system identification and signal processing can be formulated using LMIs. Also LMIs find application in Polynomial Sum-Of-Squares. The prototypical primal and dual semidefinite program is a minimization of a real linear function respectively subject to the primal and dual convex cones governing this LMI.
A major breakthrough in convex optimization was the introduction of interior-point methods. These methods were developed in a series of papers and became of true interest in the context of LMI problems in the work of Yurii Nesterov and Arkadi Nemirovski.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.