Top Qs
Timeline
Chat
Perspective
Rectified 6-orthoplexes
From Wikipedia, the free encyclopedia
Remove ads
In six-dimensional geometry, a rectified 6-orthoplex is a convex uniform 6-polytope, being a rectification of the regular 6-orthoplex.
There are unique 6 degrees of rectifications, the zeroth being the 6-orthoplex, and the 6th and last being the 6-cube. Vertices of the rectified 6-orthoplex are located at the edge-centers of the 6-orthoplex. Vertices of the birectified 6-orthoplex are located in the triangular face centers of the 6-orthoplex.
Remove ads
Rectified 6-orthoplex
Summarize
Perspective
Rectified hexacross | |
---|---|
Type | uniform 6-polytope |
Schläfli symbols | t1{34,4} or r{34,4} r{3,3,3,31,1} |
Coxeter-Dynkin diagrams | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5-faces | 76 total: 64 rectified 5-simplex 12 5-orthoplex |
4-faces | 576 total: 192 rectified 5-cell 384 5-cell |
Cells | 1200 total: 240 octahedron 960 tetrahedron |
Faces | 1120 total: 160 and 960 triangles |
Edges | 480 |
Vertices | 60 |
Vertex figure | 16-cell prism |
Petrie polygon | Dodecagon |
Coxeter groups | B6, [3,3,3,3,4] D6, [33,1,1] |
Properties | convex |
The rectified 6-orthoplex is the vertex figure for the demihexeractic honeycomb.
or
Alternate names
- rectified hexacross
- rectified hexacontitetrapeton (acronym: rag) (Jonathan Bowers)[1]
Construction
There are two Coxeter groups associated with the rectified hexacross, one with the C6 or [4,3,3,3,3] Coxeter group, and a lower symmetry with two copies of pentacross facets, alternating, with the D6 or [33,1,1] Coxeter group.
Cartesian coordinates
Cartesian coordinates for the vertices of a rectified hexacross, centered at the origin, edge length are all permutations of:
- (±1,±1,0,0,0,0)
Images
Root vectors
The 60 vertices represent the root vectors of the simple Lie group D6. The vertices can be seen in 3 hyperplanes, with the 15 vertices rectified 5-simplices cells on opposite sides, and 30 vertices of an expanded 5-simplex passing through the center. When combined with the 12 vertices of the 6-orthoplex, these vertices represent the 72 root vectors of the B6 and C6 simple Lie groups.
The 60 roots of D6 can be geometrically folded into H3 (Icosahedral symmetry), as to
, creating 2 copies of 30-vertex icosidodecahedra, with the Golden ratio between their radii:[2]
Remove ads
Birectified 6-orthoplex
Summarize
Perspective
The birectified 6-orthoplex can tessellation space in the trirectified 6-cubic honeycomb.
Alternate names
- birectified hexacross
- birectified hexacontitetrapeton (acronym: brag) (Jonathan Bowers)[3]
Cartesian coordinates
Cartesian coordinates for the vertices of a rectified hexacross, centered at the origin, edge length are all permutations of:
- (±1,±1,±1,0,0,0)
Images
It can also be projected into 3D-dimensions as →
, a dodecahedron envelope.
Remove ads
Related polytopes
These polytopes are a part a family of 63 Uniform 6-polytopes generated from the B6 Coxeter plane, including the regular 6-cube or 6-orthoplex.
Notes
References
External links
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads