Loading AI tools
Aus Wikipedia, der freien Enzyklopädie
Die Zinsstruktur ist in der Geldtheorie und Finanzwirtschaft das Verhältnis verschiedener Zinssätze zueinander auf dem Geld-, Kapital- und Kreditmarkt.
In Lehrbüchern der Finanzwirtschaft finden sich nur wenige Aussagen zur Zinsstruktur und zu ihrer Bedeutung für die Finanzierung und Konsolidierung von Finanzierungstiteln,[1] obwohl die Finanzierungskosten durch die herrschende Zinsstruktur und das Zinsniveau wesentlich beeinflusst werden.
Die Unterschiedlichkeit der Zinssätze hat ihre Ursache in der unterschiedlichen Bonität der Emittenten zinstragender Finanzprodukte, der Laufzeit und der Denomination der Kapitalanlagen.[2] Auch verschiedene Basiswerte (Wertpapier oder Zinsderivat) weisen unterschiedliche Zinssätze auf. Diese können gegebenenfalls noch weiter untergliedert werden; so unterscheiden sich die Zinsstrukturen bei Zinsswaps auch nach dem Referenzzinssatz.
Allgemein wird unterschieden zwischen der vertikalen und horizontalen Zinsstruktur.[3]
Damit können der Geld- und Kapitalmarkt für beide Arten getrennt einer Marktanalyse unterzogen werden.
Zudem wird unterschieden zwischen normaler Zinsstruktur, inverser Zinsstruktur und homogener Zinsstruktur:[6]
Alle drei Zinsstrukturen bilden insgesamt die Phasen, denen jede Zinsveränderung zugeordnet werden kann.
Die Zinsstrukturkurve (oder Zinskurve; englisch yield curve) ist die grafische Darstellung als Regressionskurve von Zinsstrukturen[10] in Form einer Zeitreihe. Sie kann Rendite (Aktienrendite, Dividendenrendite oder Umlaufrendite), Nominalzins und Realzins oder Geldmarkt- und Kreditzinsen an Geld-, Kapital- oder Kreditmärkten wiedergeben. Die Zinsstrukturkurve ist flach (homogen), wenn ein Zinssatz für alle Laufzeiten gilt. Eine steigende Zinsstrukturkurve ist der Indikator für den erwarteten Anstieg kurzfristiger Zinsen, während eine fallende Zinsstrukturkurve auf einen Rückgang kurzfristiger Zinsen schließen lässt.[11] Ferner kann bei einem positiven Zinsspread ein Anstieg des langfristigen Zinssatzes innerhalb der Laufzeit des kurzfristigen Zinssatzes erwartet werden und umgekehrt.
Bei der flachen Zinskurve sind die Zinsen von der Kapitalbindungsdauer unabhängig. Unter der Annahme, dass der Markt eine Liquiditätsprämie und eine Risikoprämie zahlt, bedeutet dies, dass fallende Zinsen erwartet werden. Eine inverse Zinskurve kann auf unterschiedliche Art erklärt werden. Die Erklärung hängt von der jeweiligen Zinstheorie (Erwartungstheorie, Liquiditätspräferenztheorie, Marktsegmentierungstheorie, Preferred-Habitat Theorie) ab. Es gibt nicht nur eine mögliche Theorie zur Erklärung einer inversen Zinskurve. Unter den unregelmäßigen Zinskurven ist die „buckelige“ (wie abgebildet) die häufigste.
Wegen der Unvollkommenheiten der Finanzmärkte und den Zufälligkeiten der Kursbildung stellen sich die Zinssätze der Finanzprodukte mit unterschiedlichen Laufzeiten im Regelfall als eine Punktwolke dar, die zwecks Erstellung einer Zinsstrukturkurve zu einer Linie geglättet wird, so dass die Zinsstrukturkurve eine künstlich erzeugte Linie ist.[12] Die Zinsdifferenzarbitrage zwischen Finanzierungstiteln und Finanzkontrakten sowie die Aktivität der Terminmärkte tragen zur Glättung der Zinsstrukturkurve bei und führen im optimalen Falle zur Arbitragefreiheit.
Aus der Zinsstruktur können Terminzinsen (englisch forward rates) berechnet werden, das sind Zinssätze, die ab einem bestimmten Datum in der Zukunft zu einer bestimmten Bindungsdauer gelten.
Eine normale Zinsstrukturkurve liegt vor, wenn , und eine normale Zinsstruktur muss nicht steigende einperiodige Terminzinssätze bedeuten.
Die Zinsstruktur ist eine Momentaufnahme bezüglich unterschiedlicher Restlaufzeiten und lässt keine Aussage über die Zukunft zu. Es lassen sich lediglich die impliziten Terminzinssätze berechnen. Diese sind aber in der Regel nicht identisch mit den zukünftigen Kassazinssätzen (englisch spot rates).
Die Quellen für die Rohdaten sind je nach betrachteter Zinsstrukturkurve unterschiedlich. Gegebenenfalls wird, sofern für bestimmte Stellen keine originären Daten für eine Zinskurve vorhanden sind, diese auch aus anderen Zinskurven übernommen.
Eine wichtige Quelle für Rohdaten sind hier die Renditen von erstklassigen Nullkuponanleihen mit verschiedenen Restlaufzeiten, aber auch Kuponanleihen, z. B. die Preise von Staatsanleihen, werden genutzt. Die kupontragenden Anleihen bringen das Problem der Kuponverzerrung (Der Kupon hat eine andere Laufzeit als die gesamte Anleihe) mit sich. Daher ist die Berechnung sehr schwierig. Grundsätzlich müssen natürlich alle anderen Variablen, wie z. B. die Bonität des Schuldners, konstant sein. Gegebenenfalls wird die Zinsstrukturkurve durch die Sätze der Swapmärkte oder Marktzinssätze (LIBOR, …) ermittelt. Die Zinssätze aus Swaps können jedoch empirisch 30 bis 40 Basispunkte höher liegen.
Hier wird sich zu Nutze gemacht, dass Swapsätze identisch sind mit Kupons von Anleihen, die zu pari notieren. Mit Hilfe des sogenannten Bootstrapping wird aus den aktuell gehandelten Swapsätzen dann die Zerocurve-Zinssätze und die Diskontfaktoren der Zinsstruktur ermittelt. Als Bootstrapping bezeichnet man ein Verfahren zur Ermittlung der Spot-Rate-Strukturkurve aus Marktdaten. Dabei werden die Diskontfaktoren sukzessive, mit der kleinsten Periode startend, ermittelt.
Da für eine zu pari notierende Anleihe gilt:
folgt für den Diskontfaktor des Jahres :
bzw. für den Zinssatz:
wobei der Cashflow und Diskontfaktor des Jahres ist.
Sonderprobleme ergeben sich daraus, dass Renditen für Nullkuponanleihen nur im Jahresabstand vorhanden sind. Damit könnte die Bewertung eines alten Swaps nicht möglich sein. Dies lässt sich jedoch durch Interpolation lösen. Auf diese Weise lässt sich beispielsweise eine fiktive Rendite der Restlaufzeit von T = ½ ermitteln.
Eine weitere Frage ist, ob der Bid- oder der Offerswapsatz verwendet werden soll. Hier kann der Mittelwert genommen werden.
Außerdem stellt sich die Frage der Zinsstrukturkurve im unterjährigen Bereich. Heranziehen lassen sich dafür die Geldmarktzinssätze, was aber unüblich ist, da es sich um Kassamarktzinsen handelt. Alternativ werden Geldmarkt-Futures eingesetzt, aus denen die Zinsstrukturkurve im unterjährigen Bereich mittels impliziten Terminsätzen berechnet werden kann.
Als Werte für das kurze Ende der Kurven eignen sich unter Umständen auch Zinssätze, die aus Geldmarkt-Futures herausgerechnet werden.
Eine alternative Methode Zinssätze am unteren Ende der Kurve zu bestimmen, ist diese so zu wählen, dass die Zinssätze von Forward Rate Agreements getroffen werden.
Ermittlung aus s-jährigen Forwardpreisen auf eine Kuponanleihe mit x Jahren Restlaufzeit. Der mit dem s-jährigen Zinssatz abgezinste Forwardpreis entspricht dem Barwert der in s gekauften Anleihe (Zahlungen erst ab s berücksichtigt).
Es werden diskrete von stetigen Verfahren unterschieden. Stetige Verfahren umfassen Spline-Verfahren, das Nelson-Siegel-Verfahren und das von der Bundesbank verwendete Svensson-Verfahren (auch erweitertes Nelson-Siegel). Die Bundesbank nutzt dabei die durchschnittliche Effektivverzinsung von laufenden Kuponanleihen (insbesondere Bundesanleihen), um Zinsstrukturkurven zu ermitteln.
Geht eine inverse Zinsstruktur nach einem Jahr sicher wieder in dieselbe inverse Zinsstruktur über, so besteht eine Arbitragemöglichkeit. Es bieten sich zwei Strategien an:
Gehe Strategie A long, B short und C middle-short. Dann ergibt sich heute und nach einem Jahr eine Auszahlung von 0. Nach zwei Jahren besteht die Auszahlung in der Differenz:
aufgrund der inversen Zinsstruktur.
Ob eine Zinsstrukturkurve Arbitragemöglichkeiten bietet, lässt sich feststellen, indem ein Arbitragetableau gebildet wird oder eine Umrechnung in die Terminkurve/Diskontstrukturkurve erfolgt.
Hauptanwendung von Zinsstrukturkurven ist die Bewertung (Berechnung des Barwerts) sowohl von Zinsderivaten wie beispielsweise Zinsswaps als auch von fest oder variabel verzinslichen Anleihen. Auch die Sensitivität des Barwertes (bei Derivaten) oder des Preises (bei verzinslichen Wertpapieren) gegenüber Zinsänderungen lässt sich somit berechnen.
Zudem eignet sich die Zinsstrukturkurve auch für die Berechnung von impliziten Terminzinssätzen und für Szenarioanalysen. Die Zinsstruktur hat darüber hinaus in der Wirtschaftsforschung eine große Bedeutung zur Abschätzung der zukünftigen Entwicklung der Finanzmärkte und der Wirtschaft.[13] Campbell Harvey gilt als Erfinder eines vielbeachteten Zinskurven-Indikators von US-Staatsanleihen. Dabei wird der Zinssatz von US-Staatsanleihen mit zehnjähriger Laufzeit mit demjenigen von drei Monaten Laufzeit in Beziehung gesetzt. Tritt eine derartige inverse Zinsstruktur ein, so handelt es sich um ein Warnsignal für den US-Aktienmarkt.[14]
Die Zinsstruktur leitet sich allgemein aus der Laufzeit von zinstragenden Finanzprodukten und dem Finanzrisiko der Kapitalüberlassung ab.[15] In der Zinsstruktur sind auch die Markterwartungen über die künftigen Zinsen und Risikoprämien enthalten.[16] Erklärungsversuche für die Entwicklung der Zinsstruktur liefern unter anderem die Erwartungstheorie, Liquiditätspräferenztheorie, Marktsegmentierungstheorie oder die Preferred-Habitat-Theorie.[10]
Zwischen Zinsstruktur und Rating von Forderungstiteln besteht ein statistischer nachweisbarer Zusammenhang in der Weise, dass ein durch ein schlechteres Rating ausgedrücktes höheres Insolvenzrisiko eines Emittenten mit einer höheren Verzinsung des Finanzierungstitels einhergeht.[21]
Geht man davon aus, dass die Zinsstruktur auch Informationen über vorhandene Inflationserwartungen beinhaltet, wird die Geldpolitik der Zentralbanken auch von der Zinsstruktur beeinflusst.[22]
Von der Zinsstruktur zu unterscheiden ist die Renditestruktur, welche die Rendite zinstragender Anleihen in Abhängigkeit von deren Laufzeit abbildet.[23] Beide stimmen nur bei einer flachen Zinsstrukturkurve überein.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.