Remove ads
Aus Wikipedia, der freien Enzyklopädie
Der Begriff linearer Operator wurde in der Funktionalanalysis (einem Teilgebiet der Mathematik) eingeführt und ist synonym zum Begriff der linearen Abbildung. Eine lineare Abbildung ist eine strukturerhaltende Abbildung zwischen Vektorräumen über einem gemeinsamen Körper. Werden Vektorräume über dem Körper der reellen oder komplexen Zahlen betrachtet und sind diese mit einer Topologie versehen (lokalkonvexe Räume, normierte Räume, Banachräume), so spricht man vorzugsweise von linearen Operatoren.
Im Gegensatz zu endlichdimensionalen Räumen, wo lineare Operatoren stets beschränkt sind, tauchen bei unendlichdimensionalen Räumen auch unbeschränkte lineare Operatoren auf.
Es seien und reelle oder komplexe Vektorräume. Eine Abbildung von nach heißt linearer Operator, wenn für alle und (bzw. ) die folgenden Bedingungen gelten:
Seien und komplexe Vektorräume. Ein Operator von in heißt antilinearer Operator, wenn für alle und die folgenden Bedingungen gelten:
Die Bedeutung linearer Operatoren besteht darin, dass sie die lineare Struktur des unterliegenden Raumes respektieren, d. h., sie sind Homomorphismen zwischen Vektorräumen.
Anwendungen linearer Operatoren sind:
Seien und zwei normierte Vektorräume und ein linearer Operator. Die Operatornorm von ist definiert durch
wobei für diese Konstante
gilt. Ist die Operatornorm endlich, so heißt der Operator beschränkt, andernfalls unbeschränkt.
Die Menge aller beschränkten linearen Operatoren vom normierten Raum in den normierten Raum nennt man . Mit der Operatornorm ist dieser selbst ein normierter Vektorraum. Falls vollständig ist, ist er sogar ein Banachraum.[1] Falls mit identisch ist, wird auch abkürzend geschrieben. Die beschränkten linearen Operatoren lassen sich wie folgt charakterisieren:
Ist ein linearer Operator von nach , dann sind die folgenden Aussagen äquivalent:
Bei der Betrachtung unbeschränkter linearer Operatoren lässt man oft auch Operatoren zu, deren Definitionsbereich (Domäne) lediglich ein Unterraum des betrachteten Raumes ist, spricht man etwa von unbeschränkten linearen Operatoren auf Hilberträumen, so lässt man als Definitionsbereich auch einen Prähilbertraum als Teilraum eines Hilbertraums zu, präziser spricht man dann von dicht definierten unbeschränkten linearen Operatoren (s. u.). Der Operator wird als partielle Abbildung aufgefasst.
Ein Operator heißt dicht definiert, wenn seine Domäne eine dichte Teilmenge des Ausgangsraumes ist. Das Interesse an unbeschränkten Operatoren ist durch die Untersuchung von Differentialoperatoren und deren Eigenwertspektrum und Observablenalgebren begründet.
Eine große Klasse unbeschränkter linearer Operatoren bilden die abgeschlossenen Operatoren. Das sind Operatoren , deren Graph in der Produkttopologie von abgeschlossen ist. Für abgeschlossene Operatoren kann z. B. das Spektrum definiert werden.
Die Theorie der unbeschränkten Operatoren wurde von John von Neumann 1929 begründet.[2][3] Im Jahr 1932[4] unabhängig von von Neumann entwickelte Marshall Harvey Stone die Theorie der unbeschränkten Operatoren.[5]
Betrachte den Differentialoperator auf dem Banachraum der stetigen Funktionen auf dem Intervall . Wählt man als Definitionsbereich die einmal stetig differenzierbaren Funktionen , dann ist ein abgeschlossener Operator, der nicht beschränkt ist.
Ist der zugrundeliegende Vektorraum endlichdimensional mit Dimension , so ist ein Vektorraum der Dimension . In diesem Fall sind alle Normen äquivalent, das heißt, sie liefern den gleichen Konvergenzbegriff und die gleiche Topologie.
Im Unendlichdimensionalen gibt es dagegen verschiedene nicht-äquivalente Topologien. Seien nun und Banachräume und eine Folge (oder auch ein Netz) in .
konvergiert in der Normtopologie gegen genau dann, wenn:
Die Normtopologie ist die Topologie, die durch die offenen Kugeln erzeugt wird.
konvergiert in der starken Operatortopologie (kurz stop) gegen genau dann, wenn es punktweise konvergiert:
oder anders ausgedrückt:
Die zugehörige Topologie ist die Initialtopologie, die durch die Menge von linearen Abbildungen
erzeugt wird. Dies ist die kleinste Topologie, in der all diese Abbildungen stetig sind. mit der starken Operatortopologie ist also ein lokalkonvexer Raum.
Alternativ ausgedrückt: Die starke Operatortopologie ist die Produkttopologie aller Funktionen von nach , eingeschränkt auf die (evtl. beschränkten) linearen Operatoren.
konvergiert in der schwachen Operatortopologie gegen genau dann, wenn
oder anders ausgedrückt:
(Hierbei bezeichnet den stetigen Dualraum von F)
Die zugehörige Topologie ist die Initialtopologie, die durch die Menge von linearen Funktionalen
erzeugt wird. Dies ist die kleinste Topologie, in der all diese Funktionale stetig sind. mit der schwachen Operatortopologie ist also ebenfalls ein lokalkonvexer Raum.
Weitere Fachbücher zur Theorie der Operatoren siehe auch Graduate Texts in Mathematics.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.