Remove ads
Aus Wikipedia, der freien Enzyklopädie
Postliminale C*-Algebren bilden eine in der Mathematik betrachtete Klasse von C*-Algebren. Alternative Bezeichnungen, die weiter unten motiviert werden, sind GCR-Algebra oder Typ-I-C*-Algebra. Es handelt sich um eine Verallgemeinerung der Klasse der liminalen C*-Algebren.
Eine C*-Algebra heißt postliminal, wenn für jedes echte, abgeschlossene, zweiseitige Ideal die Quotientenalgebra ein von verschiedenes liminales Ideal enthält.
Damit ist der Begriff der postliminalen C*-Algebra auf den der liminalen C*-Algebra zurückgeführt und stellt offenbar eine Verallgemeinerung dar. Das wird auch durch die erste der folgenden Charakterisierungen deutlich.
Ist eine irreduzible Darstellung der C*-Algebra auf dem Hilbertraum , so enthält nach Definition ein von verschiedenes liminales Ideal. Man kann zeigen, dass durch eine irreduzible Darstellung dieses Ideals definiert wird. Da liminal ist, fällt das Bild mit der Algebra der kompakten Operatoren zusammen und daraus folgt . Das Bild einer jeden irreduziblen Darstellung umfasst also die kompakten Operatoren und davon gilt sogar die Umkehrung:
Für liminale C*-Algebren hat man eine fast gleich lautende Charakterisierung, die Inklusion ist lediglich durch eine Gleichheit ersetzt (siehe Artikel liminale C*-Algebra). Da man liminale C*-Algebren wegen dieser Beziehung zu den kompakten Operatoren auch CCR-Algebren nennt (CCR=completely continuous representations), heißen postliminale C*-Algebren aus demselben Grunde auch GCR-Algebren (GCR = generalized completely continuous representations).
Eine Kompositionsreihe einer C*-Algebra ist eine Familie von abgeschlossenen, zweiseitigen Idealen , wobei
Mit dieser Begriffsbildung kann man folgende Charakterisierung beweisen:
Eine Darstellung einer C*-Algebra heißt vom Typ I, falls die vom Bild erzeugte Von-Neumann-Algebra vom Typ I ist, das heißt wenn der Bikommutant eine Typ I Von-Neumann-Algebra ist.
Daher nennt man postliminale C*-Algebren auch Typ-I-C*-Algebren. Diese Bezeichnung kann aber zur Verwirrung Anlass geben, denn eine Typ I Von-Neumann-Algebra, die ja auch eine C*-Algebra ist, ist im Allgemeinen keine Typ-I-C*-Algebra, wie das Beispiel mit unendlich-dimensionalem Hilbertraum zeigt.
Ist eine Äquivalenzklasse irreduzibler Darstellungen von , also ein Element des Spektrums , so hängt das Ideal nur von der Äquivalenzklasse und nicht von der konkreten Darstellung ab. Da die Kerne irreduzibler Darstellungen definitionsgemäß die primitiven Ideale sind, ist die Kernbildung, , eine Abbildung vom Spektrum in den Raum der primitiven Ideale. Diese ist nach Konstruktion surjektiv, im Allgemeinen aber nicht injektiv.
Eine mögliche Umkehrung dieser Aussage auch im Falle nicht-separabler C*-Algebren ist offen, jedenfalls wäre sie im Rahmen der Zermelo-Fraenkel-Mengenlehre mit Auswahlaxiom nicht beweisbar, wie die Konsistenz eines Gegenbeispiels zum Naimark-Problem zeigt.[1]
.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.