Die Pauli-Matrizen (nach Wolfgang Pauli) sind spezielle komplexe hermitesche 2×2-Matrizen. Zusammen mit der 2×2-Einheitsmatrix, die in diesem Zusammenhang mit bezeichnet wird, bilden sie
- sowohl eine Basis des 4-dimensionalen reellen Vektorraums aller komplexen hermiteschen 2×2-Matrizen
- als auch eine Basis des 4-dimensionalen komplexen Vektorraums aller komplexen 2×2-Matrizen.
Sie wurden von Wolfgang Pauli 1927 zur Beschreibung des Spins eingeführt,[1] waren in der Mathematik aber auch schon vorher bekannt.
Die Pauli-Matrizen lauten ursprünglich:
Hierbei bezeichnet die imaginäre Einheit.
Diese Matrizen wurden ursprünglich in der Quantenmechanik eingeführt, um die grundlegenden Kommutationsregeln der Komponenten des Spin-Operators zu erfüllen (siehe unten).
Häufig wird, besonders in der relativistischen Quantenmechanik, noch die Einheitsmatrix als nullte Paulimatrix dazugenommen:
Für die Multiplikation einer Pauli-Matrix mit einer anderen Pauli-Matrix ergibt sich aus den Rechenregeln der Matrixmultiplikation folgende Tafel:
Das Produkt befindet sich in der mit gekennzeichneten Zeile und der mit gekennzeichneten Spalte. Das Beispiel zeigt, dass die Pauli-Matrizen mit der Matrixmultiplikation als Verknüpfung keine Gruppe bilden.
Die von ihnen erzeugte Gruppe hat den Namen .[2] Sie enthält das Element , welches im Zentrum liegt, also mit allen Elementen kommutiert. Die Gruppe besteht somit aus den 16 Elementen Sie enthält die Quaternionengruppe Q8 als Normalteiler (siehe Die Quaternionen als Unterring von C4 und Liste kleiner Gruppen), woraus sich ergibt. Der Zykel-Graph ist .[3] Die acht Matrizen der Quaternionengruppe Q8 bilden eine irreduzible Darstellung (vgl. Quaternionengruppe, dort Charaktertafel); die darin enthaltenen Matrizen und damit auch die Pauli-Matrizen selbst sind deshalb durch obige Multiplikationstafel bis auf Ähnlichkeitstransformation eindeutig bestimmt.
Gegeben sei eine komplexe 2×2-Matrix mit Einträgen . Dann lassen sich vier komplexe Zahlen finden, für die gilt
|
|
| |
|
|
|
| |
|
|
|
Es ist
- .
Für ist die inverse Matrix gegeben durch
Es gilt die Umrechnung
Eine komplexe 2×2-Matrix kann demnach auf eindeutige Weise als Linearkombination der geschrieben werden. Die Pauli-Matrizen bilden somit eine Basis des -Vektorraums (und Matrizenrings) . Bezüglich des Frobenius-Skalarprodukts ist diese Basis ein Orthogonalsystem.
Die genannte Umrechnung definiert einen Ringisomorphismus
mit der üblichen Vektoraddition, der üblichen -Skalarmultiplikation und der Vektor-Multiplikation
|
|
| |
| |
| |
in . (Diese Vektor-Multiplikation entspricht der Multiplikation von Quaternionen.)
Es gilt genau dann, wenn
wenn also die beiden als -Vektoren angesehenen Tripel und zueinander proportional sind.
Die Quaternionen als Unterring von C4
Ein (Unter)ring ist aber ein anderer Untervektorraum von , der sich durch Koeffizienten von aufspannen lässt. Er ist ebenfalls mit der -Skalarmultiplikation verträglich und zusätzlich hinsichtlich der Multiplikation abgeschlossen. Dieser -Untervektorraum ist isomorph zu den Quaternionen .
Als Basis für reelle Koeffizienten kann man die mit der imaginären Einheit multiplizierten Pauli-Matrizen zusammen mit der Einheitsmatrix nehmen, also die Menge , mit der isomorphen Zuordnung:
mit als den bekannten Einheitsquaternionen. Vor diese Zuordnung lässt sich jeder der 24 Automorphismen der Quaternionengruppe Q8 schalten. So kann auch ein Isomorphismus „in umgekehrter Ordnung“ gebaut werden:[4]
In der Quantenphysik, in der den physikalischen Observablen auf mathematischer Seite hermitesche Operatoren bzw. Matrizen entsprechen, wird der Drehimpulsoperator von Spin-½-Zuständen, beispielsweise bei Elektronen, durch die Paulimatrizen dargestellt:
- ,
wobei „wird dargestellt durch“ bedeutet.
In der relativistischen Quantenmechanik, wo man entsprechend dem relativistischen Vierervektor-Formalismus vier Raum-Zeit- bzw. Energie-Impuls-Variablen hat, tritt die Einheitsmatrix gleichberechtigt zu den drei Pauli-Matrizen (als „nullte“ Pauli-Matrix), und mit ihrer Hilfe wird die Dirac-Gleichung mit den Dirac-Matrizen aufgebaut.
Direkt tauchen die Pauli-Matrizen auf:
- in der Pauli-Gleichung zur quantenmechanischen Beschreibung von Teilchen mit Spin im Magnetfeld, die sich aus der nichtrelativistischen Reduktion der Diracgleichung ergibt, und
- in der Beschreibung von Majorana-Fermionen (Majorana-Gleichung).
Die Pauli-Matrizen sind hermitesch und unitär. Daraus folgt mit dem durch definierten vierten Basiselement
Die Determinanten und Spuren der Pauli-Matrizen sind
- für
Aus Obigem folgt, dass jede Pauli-Matrix die Eigenwerte +1 und −1 besitzt.
Des Weiteren:
Die Pauli-Matrizen erfüllen die algebraische Relation
- für
( ist das Levi-Civita-Symbol), also insbesondere bis auf einen Faktor 2 dieselben Relationen wie die Drehimpulsalgebra
- für
und die Clifford- oder Dirac-Algebra
- für
Die Pauli-Matrizen gehören zum Spezialfall von Drehimpulsoperatoren, die auf Basisvektoren eines Drehimpuls--Multipletts mit Quantenzahlen in Maßsystemen mit folgendermaßen wirken:
Dabei ist eine natürliche Zahl und für treten die verschiedenen Quantenzahlen auf.
Für wirken die Drehimpulsoperatoren auf die Komponenten von Linearkombinationen der beiden Basisvektoren
und demnach durch Multiplikation mit den folgenden Matrizen
Mit und
ergibt sich dann, dass die Drehimpulsoperatoren auf die Komponenten von Spin-1/2-Zuständen durch Multiplikation mit den halben Pauli-Matrizen wirken.
Die lineare Hülle der mit multiplizierten[5] Pauli-Matrizen ist mit der üblichen Matrizenmultiplikation eine Lie-Algebra. Aufgrund der mit für jeden Einheitsvektor geltenden Identität[6]
sind diese drei Matrizen die Generatoren der komplexen Drehgruppe .
Der Faktor 1/2 in der obigen Gleichung ist zwar mathematisch verzichtbar. Die Gleichung wird jedoch in der physikalischen Anwendung häufig in genau dieser Form benötigt. Denn wie in der Einleitung erwähnt, stellen in der Quantenphysik die Matrizen die Operatoren für die Spinkomponenten eines Spin-1/2-Systems (beispielsweise eines Elektrons) dar. Andererseits beschreibt die durch den Exponentialausdruck gegebene Matrix die Veränderung des Spinzustands bei einer räumlichen Drehung. ist dabei der Drehwinkel, die Drehachse. Für ergibt sich , d. h., der Zustandsvektor eines Spin-1/2-Systems wird durch Drehung um den Winkel in sein Negatives und erst durch Drehung um den Winkel wieder in sich selbst übergeführt („Spinordrehungen“).
Die Matrix hat die Eigenvektoren
wie man leicht erkennen kann:
entsprechend den Eigenwerten . Die Eigenvektoren von sind
und die Eigenvektoren von
In der Mathematik können mit Hilfe des Tensorprodukts (Kronecker-Produkts) von Pauli-Matrizen (mit Einheitsmatrix) die Darstellungen der höheren Clifford-Algebren über den reellen Zahlen aufgebaut werden.
Pauli-Matrizen können zur Darstellung von Hamilton-Operatoren und zur Näherung der Exponentialfunktion solcher Operatoren verwendet werden.
Sind die vier Pauli-Matrizen, so kann man mit Hilfe des Kronecker-Produkt höherdimensionale Matrizen erzeugen.
- ;\quad \mu _{1},\mu _{2},...,\mu _{n}\in \{0,1,2,3\}\quad ;\quad n\in \mathbb {N} }
Eigenschaften der Pauli-Matrizen vererben sich auf diese Matrizen.
Sind und zwei Kronecker Produkte von Pauli-Matrizen, so gilt:
- und sind Matrizen
- (Die Einheitsmatrix)
- oder (Kommutativität)
- Die Kronecker-Produkte von Pauli-Matrizen sind linear unabhängig und bilden eine Basis im Vektorraum der -Matrizen. Hamilton-Operatoren vieler physikalischer Modelle lassen sich aufgrund der Basiseigenschaft als Summe solcher Matrizen ausdrücken (Linearkombination). Insbesondere lassen sich Erzeuger und Vernichter von Fermionen, die endlich viele Zustände einnehmen können, einfach durch sie ausdrücken.
- mit ist Kronecker-Produkt von Pauli-Matrizen.
Beispiele für derartige Modelle sind Hubbard-Modell, Heisenberg-Modell und Anderson-Modell.
Das Kronecker-Produkt von Pauli-Matrizen tritt bei der Beschreibung von Spin-1/2-Systemen auf, die aus mehreren Teilsystemen aufgebaut sind. Der Zusammenhang ist dadurch gegeben, dass das Tensorprodukt zweier Operatoren in der zugehörigen Matrixdarstellung gerade durch das Kronecker-Produkt der Matrizen gegeben ist (siehe Kronecker-Produkt#Zusammenhang mit Tensorprodukten).
Näherung der Exponentialfunktion des Hamilton-Operators
Häufig interessiert man sich für die Exponentialfunktion des Hamilton-Operators.
- mit
Aufgrund der Kommutativität kann man in einem Produkt die Matrizen beliebig anordnen.
Ist eine Permutation, so ist:
- mit
Deshalb existieren rationale Zahlen mit:
Diese rationalen Zahlen sind, von Ausnahmen abgesehen, schwer zu berechnen.
Eine erste Näherung ergibt sich, indem man nur Summanden berücksichtigt, die aus kommutierenden Matrizen bestehen.
- falls ein Paar mit und existiert
- sonst
Die Näherung lässt sich weiter verbessern, indem man Paare, Tripel, … von nicht kommutierenden Matrizen berücksichtigt.
- Willi-Hans Steeb: Kronecker Product of Matrices and Applications. B.I. Wissenschaftsverlag, Mannheim 1991, ISBN 3-411-14811-X.
Wolfgang Pauli: Zur Quantenmechanik des magnetischen Elektrons. In: Zeitschrift für Physik, Band 43, 1927, S. 601
Mikio Nakahara: Geometry, topology, and physics. CRC Press, 2003, S. xxii ff. (Google Books).
Durch die Multiplikation mit entstehen aus hermiteschen Matrizen schiefhermitesche Matrizen. Eine Darstellung mit Hilfe von Hermiteschen Operatoren und Matrizen wird von Physikern bevorzugt, weil in der Quantenmechanik messbare Größen (sog. Observablen) stets durch Hermitesche Operatoren beschrieben werden.