Top-Fragen
Zeitleiste
Chat
Kontext

Kugelausschnitt

Begriff aus der Mathematik Aus Wikipedia, der freien Enzyklopädie

Kugelausschnitt
Remove ads

Ein Kugelausschnitt oder Kugelsektor bezeichnet in der Mathematik einen kegelartigen Ausschnitt vom Mittelpunkt einer Kugel bis zu ihrer Oberfläche. Ein Sonderfall ist die Halbkugel.

Thumb
Kugelsektor (blau)

Formeln

Zusammenfassung
Kontext

Für die Berechnung von Volumen, Mantelfläche und Oberfläche eines Kugelausschnitts gelten die folgenden Formeln. Dabei bezeichnet den Radius der Kugel, den Radius des Basiskreises des Kugelsegments und die Höhe des Kugelsegments.

Diese drei Größen sind nicht unabhängig voneinander. Der Kugelausschnitt ist durch zwei beliebige dieser drei Größen bestimmt. Aus zwei der drei Größen lässt sich die dritte berechnen. In allen Formeln ist − bei ± zu nehmen, wenn der Kugelausschnitt weniger als die halbe Kugel groß ist, sonst + bei ±.

Statt und reicht auch die Angabe des Winkels des Basiskreises (siehe Abbildung). Es gilt:

Es gibt deshalb jeweils mehrere Formeln, je nachdem, welche der Größen gegeben sind.

Weitere Informationen , ...

Sonderfälle

Für ist und der Kugelausschnitt eine Halbkugel:

Für ist und der Kugelausschnitt ist eine ganze Kugel:

Herleitung

Zur Herleitung dieser Formeln nimmt man eine Unterteilung in zwei Körper vor: Kegel und Kugelsegment. Der Kegel hat den Grundkreisradius und die Höhe .

Das Volumen des Kegels ist

Das Kugelsegment hat das Volumen

Also ist das Volumen des Kugelsektors

Aus dem Satz des Pythagoras ergibt sich . Einsetzen und Auflösen der Klammern liefert schließlich

Eine weitere Möglichkeit das Volumen zu berechnen, bieten Kugelkoordinaten:

wobei der halbe Öffnungswinkel des Kegelteiles ist. Mit folgt die obige Formel für das Volumen.

Die Mantelfläche des Kegels ist

und die Oberfläche des Kugelsegments (ohne Basiskreis) ist

.

Damit ist die Oberfläche

Remove ads

Siehe auch

Literatur

  • Bronstein-Semendjajew: Taschenbuch der Mathematik. Harri-Deutsch-Verlag, 1983, ISBN 3-87144-492-8, S. 252.
  • Kleine Enzyklopädie Mathematik, Harri Deutsch-Verlag, 1977, S. 215.
Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads