Bei Punkten auf einer Kugeloberfläche (Sphäre) um den Koordinatenursprung ist der Abstand vom Kugelmittelpunkt konstant. Dann sind nur noch die beiden Winkel variabel, sie werden dann als sphärische Koordinaten oder Kugelflächenkoordinaten[1][2] bezeichnet.
Der Begriff „Kugelkoordinaten“ kann als Oberbegriff für den allgemeinen Fall und die sphärischen Koordinaten angesehen werden. Kugelkoordinaten sind wie Zylinderkoordinaten eine Verallgemeinerung der ebenen Polarkoordinaten auf den dreidimensionalen euklidischen Raum. Sie lassen sich auch weiter auf Räume beliebiger endlicher Dimension verallgemeinern.
Übliche Konvention
Ein Kugelkoordinatensystem im dreidimensionalen euklidischen Raum wird festgelegt durch die Wahl
einer gerichteten Gerade durch das Zentrum (Polachse), die die Polrichtung (oder Zenitrichtung) angibt, und durch diese festgelegt die Äquatorebene, die orthogonal zur Polrichtung durch das Zentrum verläuft, und
Oft wird gleichzeitig ein kartesisches Koordinatensystem verwendet. Dann wird typischerweise der Ursprung des kartesischen Koordinatensystems als Zentrum gewählt, die z-Achse als Polachse (und damit die x-y-Ebene als Äquatorebene) und die x-Achse als Bezugsrichtung.
In der Version der Kugelkoordinaten, die in der Mathematik und in der Physik üblich ist, wird ein Punkt durch die folgenden drei Koordinaten festgelegt:
oder , der Radius, ist der Abstand des Punktes von , hiermit wird die Kugeloberfläche festgelegt, auf der sich befindet.
oder ,[3] der Polarwinkel oder Poldistanzwinkel,[4] ist der Vertikalwinkel zwischen der Polrichtung und der Strecke , gezählt von bis (0° bis 180°), hierdurch wird der Ort des Punktes auf eine Kreislinie der Kugeloberfläche festgelegt.
oder ,[3] der Azimutalwinkel,[4] ist der Horizontalwinkel zwischen der Bezugsrichtung und der Orthogonalprojektion der Strecke , gezählt von bis (−180° bis 180°) oder von bis (0° bis 360°) gegen den Uhrzeigersinn. Hierdurch wird der Ort des Punktes auf der Kreislinie eindeutig definiert.
Die nachfolgende Abbildung zeigt einen Punkt mit den Kugelkoordinaten . Die beiden Winkelgrößen und werden auch als Winkelkoordinaten bezeichnet.
Umrechnungen
Jedem Koordinatentripel wird ein Punkt im dreidimensionalen euklidischen Raum zugeordnet (Parametrisierung). Wählt man ein kartesisches Koordinatensystem wie oben, so kann die Zuordnung durch die folgenden Gleichungen beschrieben werden:
Bei diesen Gleichungen können für , und beliebige Zahlenwerte eingesetzt werden. Damit die Kugelkoordinaten eindeutig bestimmt sind, muss man den Wertebereich der Koordinaten einschränken. Üblicherweise wird der Radius auf nichtnegative Werte beschränkt, der Winkel auf das Intervall bzw. [0, 180°] und der Winkel entweder auf das Intervall bzw. (−180°, 180°] oder das Intervall bzw. [0, 360°).
Auch dann gibt es ausgeartete Punkte, für die die Winkelkoordinaten nicht eindeutig sind. Für Punkte auf der z-Achse ist der Winkel nicht festgelegt, also beliebig. Für den Ursprung ist auch beliebig. Um Eindeutigkeit zu erreichen, kann man für diese Punkte festlegen und für den Ursprung zusätzlich .
Für die anderen Punkte lassen sich die Kugelkoordinaten aus den kartesischen Koordinaten durch die folgenden Gleichungen berechnen:[5]
Mit der arctan2-Funktion wird ein Winkel im Bogenmaß zwischen und berechnet. Es gilt:
Andere Konventionen
Die obige Koordinatenwahl ist internationaler Konsens in der theoretischen Physik. Manchmal werden die Zeichen und aber im umgekehrten Sinne verwendet, insbesondere in der amerikanischen Literatur.
die Koordinatenlinien, indem man jeweils zwei der drei Koordinaten fest lässt und die dritte den Kurvenparameter darstellt
die Koordinatenflächen, indem man eine der drei Koordinaten fest lässt und die beiden anderen die Fläche parametrisieren.
Für Kugelkoordinaten sind die Koordinatenlinien durch den Punkt
für den Parameter eine Halbgerade, die im Koordinatenursprung beginnt
für den Parameter ein Halbkreis („Meridian“) mit dem Koordinatenursprung als Mittelpunkt und Radius
für den Parameter ein Kreis („Breitenkreis“) mit Radius senkrecht zur z-Achse.
Als Koordinatenfläche durch den Punkt ergibt sich
für konstanten Radius eine Kugelfläche mit dem Koordinatenursprung als Mittelpunkt
für festen Winkel eine Kegeloberfläche mit der Spitze im Ursprung und der Polachse als Kegelachse, die für zu einer Ebene durch den „Äquator“ wird und für zu einer Geraden durch den „Nordpol“ und für zu einer Geraden durch den „Südpol“ entartet
für konstanten Wert von eine Halbebene mit der Polachse als Rand.
Zwei unterschiedliche Koordinatenflächen durch einen Punkt schneiden sich in einer Koordinatenlinie. Koordinatenlinien und Koordinatenflächen dienen dazu, die lokalen Basisvektoren zu berechnen.
In der Tensorrechnung unterscheidet man wegen ihres unterschiedlichen Verhaltens bei Koordinatentransformationen zwischen kovarianten und kontravarianten Basisvektoren:
die kovarianten Basisvektoren an einem Punkt sind jeweils tangential zu den Koordinatenlinien gerichtet
die kontravarianten Basisvektoren an einem Punkt stehen jeweils senkrecht auf den Koordinatenflächen.
Jacobi-Matrix
Die lokalen Eigenschaften der Koordinatentransformation werden durch die Jacobi-Matrix beschrieben. Für die Transformation von Kugelkoordinaten in kartesische Koordinaten lautet diese
Man berechnet die Jacobi-Matrix der entgegengesetzten Transformation am einfachsten als Inverse von :
Einige Komponenten dieser Matrix sind Brüche, an deren Nennern man die Uneindeutigkeit der Polarkoordinaten bei und bei (also oder ) erkennt.
Weniger gebräuchlich ist die Darstellung in kartesischen Koordinaten:
Im Fehlen gemischter Glieder im Linienelement spiegelt sich wider, dass der metrische Tensor
auch in Kugelkoordinaten keine Außerdiagonalelemente hat.
Der metrische Tensor ist offensichtlich das Quadrat der Diagonalmatrix
Mit Hilfe dieser Matrix lässt sich die Jacobi-Matrix als schreiben, wobei die Rotationsmatrix
ist.
Im Folgenden soll die Transformation von Vektoren und Differentialoperatoren exemplarisch dargestellt werden. Die Ergebnisse werden bevorzugt in kompakter Form unter Benutzung von Transformationsmatrizen geschrieben. Die allermeisten Aussagen und Formeln gelten nur für Punkte außerhalb der z-Achse, für die die Jacobi-Determinante ungleich null ist.
Transformation der Vektorraumbasis
Der Basisvektor zur Koordinate gibt an, in welche Richtung sich ein Punkt bewegt, wenn die Koordinate um einen infinitesimalen Betrag verändert wird:
Daraus erhält man
Um eine orthonormale Basis zu erhalten, muss noch auf die Länge normiert werden:
Auf gleiche Weise erhält man die Basisvektoren und :
Diese Basisvektoren bilden in der Reihenfolge ein Rechtssystem.
Die zugehörigen Richtungen werden auch radial, meridional und azimutal genannt. Diese Begriffe spielen nicht nur in der Astronomie und den Geowissenschaften (z.B. Geographie, Geologie oder Geophysik) eine zentrale Rolle, sondern auch in Mathematik, Physik und verschiedenen Ingenieurwissenschaften, etwa bei der Ausstrahlung von elektromagnetischen Wellen („Hertzscher Dipol“) durch eine in z-Richtung aufgespannte Antenne, wo die Ausstrahlung in radialer Richtung erfolgt, während elektrisches bzw. magnetisches Feld in meridionaler bzw. azimutaler Richtung schwingen.
Mithilfe der oben eingeführten Rotationsmatrix lassen sich die Transformationen auch kompakt darstellen:
.
In die Gegenrichtung lauten die Gleichungen dann:
Dabei wird verwendet, dass orthogonal ist und deshalb .
Transformation eines Vektorfeldes
Ein Vektor, als ein geometrisches Objekt, muss vom Koordinatensystem unabhängig sein:
Diese Bedingung wird erfüllt durch
beziehungsweise
Transformation der partiellen Ableitungen
Die partiellen Ableitungen transformieren sich wie die Basisvektoren, aber ohne Normierung. Man kann genau wie oben rechnen, nur lässt man den Punkt im Zähler weg (tatsächlich werden in der modernen Formulierung der Differentialgeometrie die Koordinatenbasisvektoren des Tangentialraums und die partiellen Ableitungen gleichgesetzt) und verwendet die Jacobi-Matrix anstelle der Rotationsmatrix . Die Transformation lautet also:
und in die Gegenrichtung
Transformation des Nabla-Operators
Der Nabla-Operator hat nur in kartesischen Koordinaten die einfache Form
Sowohl die partiellen Ableitungen als auch die Einheitsvektoren muss man in der oben hergeleiteten Weise transformieren. Man findet:
In dieser Form kann der transformierte Nabla-Operator unmittelbar angewandt werden, um den Gradienten eines in Kugelkoordinaten gegebenen Skalarfeldes zu berechnen.
Um die Divergenz eines in Kugelkoordinaten gegebenen Vektorfeldes A zu berechnen, ist hingegen zu berücksichtigen, dass nicht nur auf die Koeffizienten wirkt, sondern auch auf die in A implizit enthaltenen Basisvektoren
Um die Rotation eines in Kugelkoordinaten gegebenen Vektorfeldes A zu berechnen, ist dasselbe zu berücksichtigen:
Transformation des Laplace-Operators
Wenn man in der Divergenzformel als Vektorfeld A den Gradientenoperator einsetzt, findet man den Laplace-Operator
bzw.
Eine Verallgemeinerung der Kugelkoordinaten auf Dimensionen:
Die Winkel entwickeln sich nach:
Durch Umnummerierung erhält man eine Rekursionsformel für die Winkel: